srinuksv commited on
Commit
e7093b5
·
verified ·
1 Parent(s): ef89ec4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -27
app.py CHANGED
@@ -1,28 +1,58 @@
 
 
 
 
 
1
 
2
- from gradio import Interface, Image, Label
3
- import tensorflow as tf
4
- # Load your TensorFlow model
5
- model = tf.keras.models.load_model("traffic.h5")
6
-
7
- # Define your class names if needed
8
- class_names = ['Asian-Green-Bee-Eater', 'Brown-Headed-Barbet', 'Cattle-Egret', 'Common-Kingfisher', 'Common-Myna', 'House-Crow', 'Indian-Grey-Hornbill', 'Indian-Peacock', 'Indian-Roller', 'White-Breasted-Kingfisher']
9
-
10
- Class_names=['15 kmph', '18', '19', '30 kmph', '4 weehler', '40 kmph', '5 kmp only', '50 kmph', '51', '52', '53', '56', '57', '60 kmph', '70 kmph', '8', '80 kmph', '9', 'bicycle', 'chemical caution', 'cycle lane', 'dead end', 'go a ahead', 'home zone', 'horn', 'left dent curve', 'left service road', 'no 4-wheeler', 'no entry', 'no horn', 'no left turn', 'no over cross', 'no right and left turn', 'no right turn', 'no stopping and standing', 'no u-turn', 'proceed straight or turn right', 'railway gate', 'railway station', 'right service road', 'right v-dent curve', 'ring road', 'school zone', 'series of bends', 'side road left', 'side road right', 'sidewalk intersection', 'sland', 'traffic lights', 'turn left', 'turn right', 'turn right or left', 'u-turn', 'uphill', 'v-cuts', 'working area', 'zebra-crossing']
11
- # Function to make predictions
12
- def classify_image(image):
13
- # Preprocess the image
14
- img = tf.image.resize(image, (224, 224))
15
- img = tf.expand_dims(img, 0) # Add batch dimension
16
- # Make prediction
17
- prediction = model.predict(img)
18
- predicted_class = Class_names[prediction.argmax()]
19
- return predicted_class
20
-
21
- # Gradio interface
22
- image = Image() # Remove the `shape` argument
23
- label = Label()
24
-
25
- # Create interface
26
- interface = Interface(classify_image, image, label,
27
- title="traffic sign detection ",
28
- description="Upload an image of a traffic sign to classify its sign. ").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from keras.preprocessing import image
3
+ from keras.preprocessing.image import img_to_array
4
+ from keras.models import load_model
5
+ import numpy as np
6
 
7
+ # Load the pre-trained model from the local path
8
+ model_path = 'Leaf_name.h5'
9
+ model = load_model(model_path)
10
+
11
+ def predict_disease(image_file, model, all_labels):
12
+ """
13
+ Predict the disease from an image using the trained model.
14
+
15
+ Parameters:
16
+ - image_file: image, input image file
17
+ - model: Keras model, trained convolutional neural network
18
+ - all_labels: list, list of class labels
19
+
20
+ Returns:
21
+ - str, predicted class label
22
+ """
23
+ try:
24
+ # Load and preprocess the image
25
+ img = image.load_img(image_file, target_size=(256, 256))
26
+ img_array = img_to_array(img)
27
+ img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
28
+ img_array = img_array / 255.0 # Normalize the image
29
+
30
+ # Predict the class
31
+ predictions = model.predict(img_array)
32
+ predicted_class = np.argmax(predictions[0])
33
+
34
+ # Return the class label
35
+ return all_labels[predicted_class]
36
+
37
+ except Exception as e:
38
+ print(f"Error: {e}")
39
+ return None
40
+
41
+ # List of class labels
42
+ all_labels = ['Corn-Common_rust', 'Potato-Early_blight', 'Tomato-Bacterial_spot']
43
+
44
+ # Define the Gradio interface
45
+ def gradio_predict(image_file):
46
+ return predict_disease(image_file, model, all_labels)
47
+
48
+ # Create a Gradio interface
49
+ gr_interface = gr.Interface(
50
+ fn=gradio_predict, # Function to call for predictions
51
+ inputs=gr.Image(type="filepath"), # Upload image as file path
52
+ outputs="text", # Output will be the class label as text
53
+ title="Plant Disease Predictor",
54
+ description="Upload an image of a plant to predict the disease.",
55
+ )
56
+
57
+ # Launch the Gradio app
58
+ gr_interface.launch()