|
from dotenv import load_dotenv |
|
import gradio as gr |
|
import os |
|
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings |
|
from llama_index.llms.huggingface import HuggingFaceInferenceAPI |
|
from llama_index.embeddings.huggingface import HuggingFaceEmbedding |
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
Settings.llm = HuggingFaceInferenceAPI( |
|
model_name="meta-llama/Meta-Llama-3-8B-Instruct", |
|
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", |
|
context_window=3000, |
|
token=os.getenv("HF_TOKEN"), |
|
max_new_tokens=512, |
|
generate_kwargs={"temperature": 0.1}, |
|
) |
|
Settings.embed_model = HuggingFaceEmbedding( |
|
model_name="BAAI/bge-small-en-v1.5" |
|
) |
|
|
|
|
|
PERSIST_DIR = "db" |
|
PDF_DIRECTORY = 'data' |
|
|
|
|
|
os.makedirs(PDF_DIRECTORY, exist_ok=True) |
|
os.makedirs(PERSIST_DIR, exist_ok=True) |
|
|
|
|
|
current_chat_history = [] |
|
|
|
def data_ingestion_from_directory(): |
|
|
|
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() |
|
storage_context = StorageContext.from_defaults() |
|
index = VectorStoreIndex.from_documents(documents) |
|
index.storage_context.persist(persist_dir=PERSIST_DIR) |
|
|
|
def handle_query(message, chat_history): |
|
|
|
context_str = "" |
|
for user_message, bot_response in chat_history: |
|
context_str += f"User asked: '{user_message}'\nBot answered: '{bot_response}'\n" |
|
|
|
|
|
chat_text_qa_msgs = [ |
|
( |
|
"user", |
|
f"You are now the RedFerns Tech chatbot. Your aim is to provide answers to the user based on the conversation flow only.\n\nQuestion:\n{message}" |
|
) |
|
] |
|
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) |
|
|
|
|
|
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) |
|
index = load_index_from_storage(storage_context) |
|
|
|
|
|
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) |
|
answer = query_engine.query(message) |
|
|
|
if hasattr(answer, 'response'): |
|
response = answer.response |
|
elif isinstance(answer, dict) and 'response' in answer: |
|
response = answer['response'] |
|
else: |
|
response = "Sorry, I couldn't find an answer." |
|
|
|
|
|
chat_history.append([message, response]) |
|
|
|
return response |
|
|
|
|
|
print("Processing PDF ingestion from directory:", PDF_DIRECTORY) |
|
data_ingestion_from_directory() |
|
|
|
|
|
interface = gr.ChatInterface( |
|
fn=handle_query, |
|
inputs=gr.Textbox(label="Ask me anything about the document...", placeholder="Type your question here."), |
|
title="RedfernsTech Q&A Chatbot", |
|
description="Ask me anything about the uploaded document." |
|
) |
|
|
|
|
|
interface.launch() |
|
|