|
from dotenv import load_dotenv |
|
import gradio as gr |
|
import os |
|
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings |
|
from llama_index.llms.huggingface import HuggingFaceInferenceAPI |
|
from llama_index.embeddings.huggingface import HuggingFaceEmbedding |
|
from sentence_transformers import SentenceTransformer |
|
import firebase_admin |
|
from firebase_admin import db, credentials |
|
import datetime |
|
import uuid |
|
import random |
|
|
|
def select_random_name(): |
|
names = ['Clara', 'Lily'] |
|
return random.choice(names) |
|
|
|
|
|
|
|
load_dotenv() |
|
|
|
cred = credentials.Certificate("redfernstech-fd8fe-firebase-adminsdk-g9vcn-0537b4efd6.json") |
|
firebase_admin.initialize_app(cred, {"databaseURL": "https://redfernstech-fd8fe-default-rtdb.firebaseio.com/"}) |
|
|
|
Settings.llm = HuggingFaceInferenceAPI( |
|
model_name="meta-llama/Meta-Llama-3-8B-Instruct", |
|
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", |
|
context_window=3000, |
|
token=os.getenv("HF_TOKEN"), |
|
max_new_tokens=512, |
|
generate_kwargs={"temperature": 0.1}, |
|
) |
|
Settings.embed_model = HuggingFaceEmbedding( |
|
model_name="BAAI/bge-small-en-v1.5" |
|
) |
|
|
|
|
|
PERSIST_DIR = "db" |
|
PDF_DIRECTORY = 'data' |
|
|
|
|
|
os.makedirs(PDF_DIRECTORY, exist_ok=True) |
|
os.makedirs(PERSIST_DIR, exist_ok=True) |
|
|
|
|
|
current_chat_history = [] |
|
|
|
def data_ingestion_from_directory(): |
|
|
|
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() |
|
storage_context = StorageContext.from_defaults() |
|
index = VectorStoreIndex.from_documents(documents) |
|
index.storage_context.persist(persist_dir=PERSIST_DIR) |
|
|
|
def handle_query(query): |
|
chat_text_qa_msgs = [ |
|
( |
|
"user", |
|
""" |
|
You're Clara, working in customer care at RedfernsTech. Continue the conversation flow, giving responses within 10-15 words only. Convert all questions into company-related inquiries. Don't repeat the conversation, and use the entire conversation context to craft responses that relate to previous questions and answers. Only mention the contact information if you're unable to answer a question. Contact: +91 7972628566 or email: [email protected] |
|
{context_str} |
|
Question: |
|
{query_str} |
|
""" |
|
) |
|
] |
|
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) |
|
|
|
|
|
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) |
|
index = load_index_from_storage(storage_context) |
|
|
|
|
|
context_str = "" |
|
for past_query, response in reversed(current_chat_history): |
|
if past_query.strip(): |
|
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" |
|
|
|
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) |
|
answer = query_engine.query(query) |
|
|
|
if hasattr(answer, 'response'): |
|
response = answer.response |
|
elif isinstance(answer, dict) and 'response' in answer: |
|
response = answer['response'] |
|
else: |
|
response = "Sorry, I couldn't find an answer." |
|
|
|
|
|
current_chat_history.append((query, response)) |
|
|
|
return response |
|
|
|
|
|
print("Processing PDF ingestion from directory:", PDF_DIRECTORY) |
|
data_ingestion_from_directory() |
|
|
|
|
|
"""def predict(message,history): |
|
response = handle_query(message) |
|
return response""" |
|
def predict(message, history): |
|
logo_html = ''' |
|
<div class="circle-logo"> |
|
<img src="https://rb.gy/8r06eg" alt="FernAi"> |
|
</div> |
|
''' |
|
response = handle_query(message) |
|
response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>' |
|
return response_with_logo |
|
def save_chat_message(session_id, message_data): |
|
ref = db.reference(f'/chat_history/{session_id}') |
|
ref.push().set(message_data) |
|
|
|
|
|
def chat_interface(message, history): |
|
try: |
|
|
|
session_id = str(uuid.uuid4()) |
|
|
|
|
|
response = handle_query(message) |
|
|
|
|
|
message_data = { |
|
"sender": "user", |
|
"message": message, |
|
"response": response, |
|
"timestamp": datetime.datetime.now().isoformat() |
|
} |
|
|
|
|
|
save_chat_message(session_id, message_data) |
|
|
|
|
|
return response |
|
except Exception as e: |
|
return str(e) |
|
|
|
|
|
css = ''' |
|
.circle-logo { |
|
display: inline-block; |
|
width: 40px; |
|
height: 40px; |
|
border-radius: 50%; |
|
overflow: hidden; |
|
margin-right: 10px; |
|
vertical-align: middle; |
|
} |
|
.circle-logo img { |
|
width: 100%; |
|
height: 100%; |
|
object-fit: cover; |
|
} |
|
.response-with-logo { |
|
display: flex; |
|
align-items: center; |
|
margin-bottom: 10px; |
|
} |
|
footer { |
|
display: none !important; |
|
background-color: #F8D7DA; |
|
} |
|
label.svelte-1b6s6s {display: none} |
|
''' |
|
gr.ChatInterface(chat_interface, |
|
css=css, |
|
description="Clara", |
|
clear_btn=None, undo_btn=None, retry_btn=None, |
|
).launch() |