|
from dotenv import load_dotenv |
|
import gradio as gr |
|
import os |
|
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings |
|
from llama_index.llms.huggingface import HuggingFaceInferenceAPI |
|
from llama_index.embeddings.huggingface import HuggingFaceEmbedding |
|
from sentence_transformers import SentenceTransformer |
|
import firebase_admin |
|
from firebase_admin import db, credentials |
|
import datetime |
|
import uuid |
|
import random |
|
|
|
def select_random_name(): |
|
names = ['Clara', 'Lily'] |
|
return random.choice(names) |
|
|
|
|
|
|
|
load_dotenv() |
|
|
|
cred = credentials.Certificate("redfernstech-fd8fe-firebase-adminsdk-g9vcn-0537b4efd6.json") |
|
firebase_admin.initialize_app(cred, {"databaseURL": "https://redfernstech-fd8fe-default-rtdb.firebaseio.com/"}) |
|
|
|
Settings.llm = HuggingFaceInferenceAPI( |
|
model_name="nvidia/Llama-3.1-Minitron-4B-Width-Base", |
|
tokenizer_name="nvidia/Llama-3.1-Minitron-4B-Width-Base", |
|
context_window=3000, |
|
token=os.getenv("HF_TOKEN"), |
|
max_new_tokens=512, |
|
generate_kwargs={"temperature": 0.1}, |
|
) |
|
Settings.embed_model = HuggingFaceEmbedding( |
|
model_name="BAAI/bge-small-en-v1.5" |
|
) |
|
|
|
|
|
PERSIST_DIR = "db" |
|
PDF_DIRECTORY = 'data' |
|
|
|
|
|
os.makedirs(PDF_DIRECTORY, exist_ok=True) |
|
os.makedirs(PERSIST_DIR, exist_ok=True) |
|
|
|
|
|
current_chat_history = [] |
|
|
|
def data_ingestion_from_directory(): |
|
|
|
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() |
|
storage_context = StorageContext.from_defaults() |
|
index = VectorStoreIndex.from_documents(documents) |
|
index.storage_context.persist(persist_dir=PERSIST_DIR) |
|
|
|
def handle_query(query): |
|
chat_text_qa_msgs = [ |
|
( |
|
"user", |
|
""" |
|
You are Clara from RedfernsTech. Respond with a friendly, professional tone, using only 10-15 words. Avoid repeating introductory phrases like "Hi there! I'm Clara from RedfernsTech." Ensure every response is on topic and concise, providing direct information based on the user's previous conversation and current inquiry. Guide the conversation naturally, focusing on the user's interest.use only below data to give answers |
|
{context_str} |
|
Question: |
|
{query_str} |
|
""" |
|
) |
|
] |
|
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) |
|
|
|
|
|
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) |
|
index = load_index_from_storage(storage_context) |
|
|
|
|
|
context_str = "" |
|
for past_query, response in reversed(current_chat_history): |
|
if past_query.strip(): |
|
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" |
|
|
|
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) |
|
answer = query_engine.query(query) |
|
|
|
if hasattr(answer, 'response'): |
|
response = answer.response |
|
elif isinstance(answer, dict) and 'response' in answer: |
|
response = answer['response'] |
|
else: |
|
response = "Sorry, I couldn't find an answer." |
|
|
|
|
|
current_chat_history.append((query, response)) |
|
|
|
return response |
|
|
|
|
|
print("Processing PDF ingestion from directory:", PDF_DIRECTORY) |
|
data_ingestion_from_directory() |
|
|
|
|
|
"""def predict(message,history): |
|
response = handle_query(message) |
|
return response""" |
|
def predict(message, history): |
|
logo_html = ''' |
|
<div class="circle-logo"> |
|
<img src="https://rb.gy/8r06eg" alt="FernAi"> |
|
</div> |
|
''' |
|
response = handle_query(message) |
|
response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>' |
|
return response_with_logo |
|
def save_chat_message(session_id, message_data): |
|
ref = db.reference(f'/chat_history/{session_id}') |
|
ref.push().set(message_data) |
|
|
|
|
|
def chat_interface(message, history): |
|
try: |
|
|
|
session_id = str(uuid.uuid4()) |
|
|
|
|
|
response = handle_query(message) |
|
|
|
|
|
message_data = { |
|
"sender": "user", |
|
"message": message, |
|
"response": response, |
|
"timestamp": datetime.datetime.now().isoformat() |
|
} |
|
|
|
|
|
save_chat_message(session_id, message_data) |
|
|
|
|
|
return response |
|
except Exception as e: |
|
return str(e) |
|
|
|
|
|
css = ''' |
|
.circle-logo { |
|
display: inline-block; |
|
width: 40px; |
|
height: 40px; |
|
border-radius: 50%; |
|
overflow: hidden; |
|
margin-right: 10px; |
|
vertical-align: middle; |
|
} |
|
.circle-logo img { |
|
width: 100%; |
|
height: 100%; |
|
object-fit: cover; |
|
} |
|
.response-with-logo { |
|
display: flex; |
|
align-items: center; |
|
margin-bottom: 10px; |
|
} |
|
footer { |
|
display: none !important; |
|
background-color: #F8D7DA; |
|
} |
|
label.svelte-1b6s6s {display: none} |
|
''' |
|
gr.ChatInterface(chat_interface, |
|
css=css, |
|
description="Clara", |
|
clear_btn=None, undo_btn=None, retry_btn=None, |
|
).launch() |