File size: 7,450 Bytes
1e17b27
fada25c
4615482
4602937
fada25c
 
1ee7960
162343b
 
 
 
dd1c2fe
 
 
 
 
 
1ee7960
2b44908
fada25c
1ee7960
162343b
 
1ee7960
fada25c
b5e13fe
 
fada25c
 
 
 
 
 
 
 
3430157
1ee7960
fada25c
1ee7960
fada25c
2b44908
fada25c
 
 
2b44908
 
 
fada25c
1ee7960
fada25c
 
 
 
 
6dd9499
fada25c
 
 
6dd9499
bede603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dd9499
 
 
 
fada25c
 
 
 
 
 
 
 
6dd9499
 
 
 
 
 
 
 
fada25c
 
2b44908
fada25c
2b44908
fada25c
2b44908
fada25c
6dd9499
 
fada25c
2b44908
 
1ee7960
 
 
 
 
 
 
 
7adc402
 
 
86b945b
7adc402
 
 
 
 
162343b
1ee7960
162343b
 
1ee7960
162343b
 
 
 
 
1ee7960
162343b
 
 
 
 
 
 
1ee7960
162343b
 
1ee7960
162343b
 
1ee7960
162343b
 
 
 
7adc402
0a5200d
7adc402
1ee7960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455007f
 
 
1ee7960
0a5200d
1ee7960
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from dotenv import load_dotenv
import gradio as gr
import os
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from sentence_transformers import SentenceTransformer
import firebase_admin
from firebase_admin import db, credentials
import datetime
import uuid
import random

def select_random_name():
    names = ['Clara', 'Lily']
    return random.choice(names)

# Example usage
# Load environment variables
load_dotenv()
# authenticate to firebase
cred = credentials.Certificate("redfernstech-fd8fe-firebase-adminsdk-g9vcn-0537b4efd6.json")
firebase_admin.initialize_app(cred, {"databaseURL": "https://redfernstech-fd8fe-default-rtdb.firebaseio.com/"})
# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
    model_name="meta-llama/Meta-Llama-3-8B-Instruct",
    tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
    context_window=3000,
    token=os.getenv("HF_TOKEN"),
    max_new_tokens=512,
    generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-small-en-v1.5"
)

# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'  # Changed to the directory containing PDFs

# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)

# Variable to store current chat conversation
current_chat_history = []

def data_ingestion_from_directory():
    # Use SimpleDirectoryReader on the directory containing the PDF files
    documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
    storage_context = StorageContext.from_defaults()
    index = VectorStoreIndex.from_documents(documents)
    index.storage_context.persist(persist_dir=PERSIST_DIR)

def handle_query(query):
    chat_text_qa_msgs = [
        (
            "user",
            """
            "You are Clara, working in customer care at RedfernsTech. Your role is to assist users with inquiries related to RedfernsTech’s products and services. For each user question, respond within 10-15 words, converting all inquiries into company-related topics. Use the entire conversation context to ensure each response is relevant to previous questions and answers. If you do not know the answer, reply with: 'You can directly contact us at +91 7972628566 or email us at [email protected].' Avoid repetition of previous answers and maintain a professional tone."

Example Application of the Prompt:

User Inquiry: "I'm looking for a solution to simplify Salesforce product searches."

Response: "Check out our Product Filter App for precise Salesforce product searches. Product Filter App"
User Inquiry: "What are the key features of the Product Filter App?"

Response: "Key features include tailored search results, advanced filtering, and seamless integration."
User Inquiry: "Is the Product Filter App compatible with Sales Cloud, Service Cloud, and Revenue Cloud?"

Response: "Yes, it is compatible with Sales Cloud, Service Cloud, and Revenue Cloud."
User Inquiry: "Tell me about your services."

Response: "We offer Salesforce integration, app development, admin & support, migration, and more."
User Inquiry: "What is Salesforce CPQ?"

Response: "Salesforce CPQ streamlines the sales quoting process with efficient configuration and pricing."
User Inquiry: "What is Salesforce Training?"

Response: "Salesforce Training empowers users and admins for effective Salesforce utilization."
User Inquiry: "What is the Thumbnail Viewer App?"

Response: "The Thumbnail Viewer App offers immersive previews of diverse file types."
User Inquiry: "What is the Mass Approvals App?"

             Response: "The Mass Approvals App allows simultaneous approval of multiple records."
              If unsure: "You can directly contact us at +91 7972628566 or email us at [email protected]."


            {context_str}
            Question:
            {query_str}
            """
        )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)

    # Load index from storage
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)

    # Use chat history to enhance response
    context_str = ""
    for past_query, response in reversed(current_chat_history):
        if past_query.strip():
            context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"

    query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
    answer = query_engine.query(query)

    if hasattr(answer, 'response'):
        response = answer.response
    elif isinstance(answer, dict) and 'response' in answer:
        response = answer['response']
    else:
        response = "Sorry, I couldn't find an answer."

    # Update current chat history
    current_chat_history.append((query, response))

    return response

# Example usage: Process PDF ingestion from directory
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
data_ingestion_from_directory()

# Define the function to handle predictions
"""def predict(message,history):
    response = handle_query(message)
    return response"""
def predict(message, history):
    logo_html = '''
    <div class="circle-logo">
      <img src="https://rb.gy/8r06eg" alt="FernAi">
    </div>
    '''
    response = handle_query(message)
    response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
    return response_with_logo
def save_chat_message(session_id, message_data):
    ref = db.reference(f'/chat_history/{session_id}')  # Use the session ID to save chat data
    ref.push().set(message_data)

# Define your Gradio chat interface function (replace with your actual logic)
def chat_interface(message, history):
    try:
        # Generate a unique session ID for this chat session
        session_id = str(uuid.uuid4())

        # Process the user message and generate a response (your chatbot logic)
        response = handle_query(message)

        # Capture the message data
        message_data = {
            "sender": "user",
            "message": message,
            "response": response,
            "timestamp": datetime.datetime.now().isoformat()  # Use a library like datetime
        }

        # Call the save function to store in Firebase with the generated session ID
        save_chat_message(session_id, message_data)

        # Return the bot response
        return response
    except Exception as e:
        return str(e)

# Custom CSS for styling
css = '''
  .circle-logo {
  display: inline-block;
  width: 40px;
  height: 40px;
  border-radius: 50%;
  overflow: hidden;
  margin-right: 10px;
  vertical-align: middle;
}
.circle-logo img {
  width: 100%;
  height: 100%;
  object-fit: cover;
}
.response-with-logo {
  display: flex;
  align-items: center;
  margin-bottom: 10px;
}
footer {
    display: none !important;
    background-color: #F8D7DA;
  }
label.svelte-1b6s6s {display: none}
'''
gr.ChatInterface(chat_interface,
                 css=css,
                 description="Clara",
                 clear_btn=None, undo_btn=None, retry_btn=None,
                 ).launch()