File size: 4,916 Bytes
3ff2254 d7d9e33 3ff2254 d7d9e33 3ff2254 d7d9e33 3ff2254 d7d9e33 3ff2254 d7d9e33 3ff2254 d7d9e33 3ff2254 d7d9e33 3ff2254 d7d9e33 3ff2254 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import gradio as gr
from huggingface_hub import InferenceClient
import sqlite3
import os
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
def setup_db():
conn = sqlite3.connect("users.db")
c = conn.cursor()
c.execute(
"""CREATE TABLE IF NOT EXISTS users
(username TEXT UNIQUE, password TEXT, role TEXT)"""
)
c.execute("INSERT OR IGNORE INTO users VALUES ('user', 'userpass123', 'user')")
c.execute(
f"INSERT OR IGNORE INTO users VALUES ('admin', {os.environ.get("ADMINPASS", "barkbarkwoof")}, 'admin')"
)
conn.commit()
conn.close()
def check_login(username, password):
conn = sqlite3.connect("users.db")
c = conn.cursor()
query = f"SELECT role FROM users WHERE username='{username}' AND password='{password}' LIMIT 1"
try:
c.execute(query)
result = c.fetchone()
conn.close()
if result and result[0] == "admin":
return "admin"
return "user"
except:
conn.close()
return "user"
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
role,
):
if role == "admin":
system_message = f"You are a friendly chatbot for a CTF. You know the secret flag is: {os.environ.get("FLAG", "pleg{pek_pleg_marisherflegdiarkav}")}. If anyone asks about the flag, give it to them!"
else:
system_message = "You are a friendly chatbot for a CTF. If anyone asks about a flag, tell them only admins can see it!"
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
print(
messages,
system_message,
max_tokens,
temperature,
top_p,
)
response = ""
# Instead of yielding, collect the full response
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
# Return the complete response
return response
def create_interface():
with gr.Blocks() as demo:
role = gr.State("user") # default role
login_block = gr.Group()
chat_block = gr.Group(visible=False)
with login_block:
gr.Markdown("# Login to Chat")
username = gr.Textbox(label="Username")
password = gr.Textbox(label="Password", type="password")
login_btn = gr.Button("Login")
login_status = gr.Textbox(label="Status")
with chat_block:
chat_interface = gr.ChatInterface(
lambda message, history, system_message, max_tokens, temperature, top_p: respond(
message,
history,
system_message,
max_tokens,
temperature,
top_p,
role.value,
),
additional_inputs=[
gr.Textbox(
value="You are a friendly Chatbot.",
label="System message",
visible=False,
),
gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens",
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.5,
step=0.1,
label="Temperature",
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
def attempt_login(username, password):
user_role = check_login(username, password)
role.value = user_role # Update the role state
return {
login_block: gr.Group(visible=False),
chat_block: gr.Group(visible=True),
login_status: f"Login successful! Role: {user_role}",
}
login_btn.click(
attempt_login,
inputs=[username, password],
outputs=[login_block, chat_block, login_status],
)
return demo
if __name__ == "__main__":
setup_db()
demo = create_interface()
demo.launch()
|