summarizer / app.py
spuun's picture
Update app.py
a19ef58
raw
history blame
1.05 kB
import gradio as gr
from transformers import pipeline
model_id = "knkarthick/MEETING_SUMMARY"
generator = pipeline(task="text2text-generation", model=model_id)
#def split_paragraph(paragraph, max_chunk_size=1024):
# words = paragraph.split()
# chunks = []
# current_chunk = []
# current_chunk_size = 0
# for word in words:
# word_len = len(word) + 1 # Add 1 for the space
# if current_chunk_size + word_len <= max_chunk_size:
# current_chunk.append(word)
# current_chunk_size += word_len
# else:
# chunks.append(' '.join(current_chunk))
# current_chunk = [word]
# current_chunk_size = word_len
# if current_chunk:
# chunks.append(' '.join(current_chunk))
# return chunks
def launch(input):
# if len(input) > 1024:
# return " ".join([res["generated_text"] for res in generator(split_paragraph(input))])
return generator(input)[0]["generated_text"]
iface = gr.Interface(launch, inputs="text", outputs="text")
iface.launch()