Spaces:
Running
Running
update
Browse files- app.py +14 -3
- metadata.json +29 -1
- plot_results.py +153 -0
- requirements.txt +1 -0
app.py
CHANGED
@@ -12,6 +12,7 @@ from src.about import (
|
|
12 |
AUTHORS,
|
13 |
)
|
14 |
from src.display.formatting import make_clickable_model
|
|
|
15 |
|
16 |
demo = gr.Blocks(css=custom_css)
|
17 |
with demo:
|
@@ -96,9 +97,16 @@ with demo:
|
|
96 |
# rename columns
|
97 |
leaderboard_df = leaderboard_df.rename(columns={"Model Path": "Model"})
|
98 |
leaderboard_df = leaderboard_df.rename(columns={"Num Questions Parseable": "Percentage Questions Parseable"})
|
|
|
99 |
|
100 |
-
leaderboard_df_styled = leaderboard_df.style.background_gradient(
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
rounding = {}
|
104 |
# for col in ["Benchmark Score", "Num Questions Parseable"]:
|
@@ -110,13 +118,16 @@ with demo:
|
|
110 |
|
111 |
leaderboard_table = gr.components.Dataframe(
|
112 |
value=leaderboard_df_styled,
|
113 |
-
# headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
114 |
datatype=['markdown', 'number', 'number', 'number', 'str'],
|
115 |
elem_id="leaderboard-table",
|
116 |
interactive=False,
|
117 |
visible=True,
|
118 |
)
|
119 |
|
|
|
|
|
|
|
|
|
120 |
gr.Markdown(AUTHORS, elem_classes="markdown-text")
|
121 |
|
122 |
demo.queue(default_concurrency_limit=40).launch()
|
|
|
12 |
AUTHORS,
|
13 |
)
|
14 |
from src.display.formatting import make_clickable_model
|
15 |
+
from plot_results import create_performance_plot
|
16 |
|
17 |
demo = gr.Blocks(css=custom_css)
|
18 |
with demo:
|
|
|
97 |
# rename columns
|
98 |
leaderboard_df = leaderboard_df.rename(columns={"Model Path": "Model"})
|
99 |
leaderboard_df = leaderboard_df.rename(columns={"Num Questions Parseable": "Percentage Questions Parseable"})
|
100 |
+
# Set midpoint for gradient coloring based on data ranges
|
101 |
|
102 |
+
leaderboard_df_styled = leaderboard_df.style.background_gradient(
|
103 |
+
cmap="RdYlGn"
|
104 |
+
)
|
105 |
+
leaderboard_df_styled = leaderboard_df_styled.background_gradient(
|
106 |
+
cmap="RdYlGn_r",
|
107 |
+
subset=['Params'],
|
108 |
+
vmax=150
|
109 |
+
)
|
110 |
|
111 |
rounding = {}
|
112 |
# for col in ["Benchmark Score", "Num Questions Parseable"]:
|
|
|
118 |
|
119 |
leaderboard_table = gr.components.Dataframe(
|
120 |
value=leaderboard_df_styled,
|
|
|
121 |
datatype=['markdown', 'number', 'number', 'number', 'str'],
|
122 |
elem_id="leaderboard-table",
|
123 |
interactive=False,
|
124 |
visible=True,
|
125 |
)
|
126 |
|
127 |
+
# Create and show the performance plot below the table
|
128 |
+
fig = create_performance_plot()
|
129 |
+
plot = gr.Plot(value=fig, elem_id="performance-plot")
|
130 |
+
|
131 |
gr.Markdown(AUTHORS, elem_classes="markdown-text")
|
132 |
|
133 |
demo.queue(default_concurrency_limit=40).launch()
|
metadata.json
CHANGED
@@ -319,5 +319,33 @@
|
|
319 |
"speakleash/Bielik-11B-v2.0-Instruct": 11,
|
320 |
"speakleash/Bielik-11B-v2.2-Instruct": 11,
|
321 |
"speakleash/Bielik-11B-v2.1-Instruct": 11,
|
322 |
-
"speakleash/Bielik-11B-v2.3-Instruct": 11
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
}
|
|
|
319 |
"speakleash/Bielik-11B-v2.0-Instruct": 11,
|
320 |
"speakleash/Bielik-11B-v2.2-Instruct": 11,
|
321 |
"speakleash/Bielik-11B-v2.1-Instruct": 11,
|
322 |
+
"speakleash/Bielik-11B-v2.3-Instruct": 11,
|
323 |
+
"CYFRAGOVPL/PLLuM-12B-nc-chat": 12,
|
324 |
+
"CYFRAGOVPL/PLLuM-12B-chat": 12,
|
325 |
+
"CYFRAGOVPL/PLLuM-12B-instruct": 12,
|
326 |
+
"CYFRAGOVPL/Llama-PLLuM-8B-instruct": 8,
|
327 |
+
"CYFRAGOVPL/PLLuM-12B-nc-instruct": 12,
|
328 |
+
"CYFRAGOVPL/Llama-PLLuM-8B-chat": 8,
|
329 |
+
"CYFRAGOVPL/PLLuM-8x7B-nc-chat": 46.7,
|
330 |
+
"CYFRAGOVPL/PLLuM-8x7B-nc-instruct": 46.7,
|
331 |
+
"CYFRAGOVPL/PLLuM-8x7B-chat": 46.7,
|
332 |
+
"CYFRAGOVPL/PLLuM-8x7B-instruct": 46.7,
|
333 |
+
"CYFRAGOVPL/Llama-PLLuM-70B-chat": 70,
|
334 |
+
"CYFRAGOVPL/Llama-PLLuM-70B-instruct": 70,
|
335 |
+
"Qwen/Qwen2.5-7B-Instruct": 7,
|
336 |
+
"Qwen/Qwen2.5-14B-Instruct": 14,
|
337 |
+
"Qwen/Qwen2.5-1.5B-Instruct": 1.5,
|
338 |
+
"microsoft/phi-4": 14.7,
|
339 |
+
"Qwen/Qwen2.5-32B-Instruct": 32,
|
340 |
+
"Qwen/Qwen2.5-72B-Instruct": 72,
|
341 |
+
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": 70,
|
342 |
+
"meta-llama/Llama-3.2-1B-Instruct": 1,
|
343 |
+
"utter-project/EuroLLM-9B-Instruct": 9,
|
344 |
+
"mistralai/Mistral-Small-Instruct-2409": 22.2,
|
345 |
+
"mistralai/Mistral-Small-24B-Instruct-2501": 24,
|
346 |
+
"meta-llama/Llama-3.3-70B-Instruct": 70,
|
347 |
+
"meta-llama/Llama-3.2-3B-Instruct": 3,
|
348 |
+
"Qwen/Qwen2.5-3B-Instruct": 3,
|
349 |
+
"mistralai/Mistral-Nemo-Instruct-2407": 12,
|
350 |
+
"microsoft/Phi-4-mini-instruct": 4
|
351 |
}
|
plot_results.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
+
import json
|
5 |
+
import csv
|
6 |
+
|
7 |
+
def create_performance_plot(csv_path='benchmark_results.csv', metadata_path='metadata.json'):
|
8 |
+
# Define whitelist of interesting models (partial matches)
|
9 |
+
WHITELIST = [
|
10 |
+
'Meta-Llama-3.1-70B-Instruct'
|
11 |
+
]
|
12 |
+
|
13 |
+
# Read the benchmark results with error handling for inconsistent rows
|
14 |
+
valid_rows = []
|
15 |
+
expected_fields = 14 # Number of expected fields in each row
|
16 |
+
|
17 |
+
with open(csv_path, 'r') as f:
|
18 |
+
reader = csv.reader(f)
|
19 |
+
header = next(reader) # Get header row
|
20 |
+
# Strip whitespace from header names
|
21 |
+
header = [h.strip() for h in header]
|
22 |
+
for row in reader:
|
23 |
+
if len(row) == expected_fields: # Only keep rows with correct number of fields
|
24 |
+
# Strip whitespace from values
|
25 |
+
valid_rows.append([val.strip() for val in row])
|
26 |
+
|
27 |
+
# Create DataFrame from valid rows
|
28 |
+
df = pd.DataFrame(valid_rows, columns=header)
|
29 |
+
|
30 |
+
# Read model sizes from metadata
|
31 |
+
with open(metadata_path, 'r') as f:
|
32 |
+
metadata = json.load(f)
|
33 |
+
|
34 |
+
# Process the data
|
35 |
+
# Keep only successful runs (where Benchmark Score is not FAILED)
|
36 |
+
df = df[df['Benchmark Score'] != 'FAILED']
|
37 |
+
df = df[df['Benchmark Score'].notna()]
|
38 |
+
# Convert score to numeric, handling invalid values
|
39 |
+
df['Benchmark Score'] = pd.to_numeric(df['Benchmark Score'], errors='coerce')
|
40 |
+
df = df[df['Benchmark Score'].notna()] # Remove rows where conversion failed
|
41 |
+
|
42 |
+
# Convert Num Questions Parseable to numeric and calculate adjusted score
|
43 |
+
df['Num Questions Parseable'] = pd.to_numeric(df['Num Questions Parseable'], errors='coerce')
|
44 |
+
df['Benchmark Score'] = df['Benchmark Score'] * (df['Num Questions Parseable'] / 171)
|
45 |
+
|
46 |
+
# For each model, keep only the latest run
|
47 |
+
df['Run ID'] = df['Run ID'].fillna('')
|
48 |
+
df['timestamp'] = pd.to_datetime(df['Benchmark Completed'])
|
49 |
+
df = df.sort_values('timestamp')
|
50 |
+
df = df.drop_duplicates(subset=['Model Path'], keep='last')
|
51 |
+
|
52 |
+
# Get model sizes
|
53 |
+
def get_model_size(model_path):
|
54 |
+
# Try exact match first
|
55 |
+
if model_path in metadata:
|
56 |
+
return metadata[model_path]
|
57 |
+
# Try with max_length suffix
|
58 |
+
if f"{model_path},max_length=4096" in metadata:
|
59 |
+
return metadata[f"{model_path},max_length=4096"]
|
60 |
+
return None
|
61 |
+
|
62 |
+
# Print models without size before filtering
|
63 |
+
print("\nModels without size assigned:")
|
64 |
+
models_without_size = df[df['Model Path'].apply(get_model_size).isna()]
|
65 |
+
for model in models_without_size['Model Path']:
|
66 |
+
print(f"- {model}")
|
67 |
+
|
68 |
+
df['Model Size'] = df['Model Path'].apply(get_model_size)
|
69 |
+
df = df[df['Model Size'].notna()]
|
70 |
+
|
71 |
+
# Remove extreme outliers (scores that are clearly errors)
|
72 |
+
q1 = df['Benchmark Score'].quantile(0.25)
|
73 |
+
q3 = df['Benchmark Score'].quantile(0.75)
|
74 |
+
iqr = q3 - q1
|
75 |
+
df = df[
|
76 |
+
(df['Benchmark Score'] >= q1 - 1.5 * iqr) &
|
77 |
+
(df['Benchmark Score'] <= q3 + 1.5 * iqr)
|
78 |
+
]
|
79 |
+
|
80 |
+
# Find models on Pareto frontier
|
81 |
+
sizes = sorted(df['Model Size'].unique())
|
82 |
+
frontier_points = []
|
83 |
+
max_score = float('-inf')
|
84 |
+
frontier_models = set()
|
85 |
+
|
86 |
+
for size in sizes:
|
87 |
+
# Get scores for models of this size or smaller
|
88 |
+
subset = df[df['Model Size'] <= size]
|
89 |
+
if len(subset) > 0:
|
90 |
+
max_score_idx = subset['Benchmark Score'].idxmax()
|
91 |
+
current_max = subset.loc[max_score_idx, 'Benchmark Score']
|
92 |
+
if current_max > max_score:
|
93 |
+
max_score = current_max
|
94 |
+
frontier_points.append((size, max_score))
|
95 |
+
frontier_models.add(subset.loc[max_score_idx, 'Model Path'])
|
96 |
+
|
97 |
+
# Filter models - keep those on Pareto frontier or matching whitelist
|
98 |
+
df['Keep'] = False
|
99 |
+
for idx, row in df.iterrows():
|
100 |
+
if row['Model Path'] in frontier_models:
|
101 |
+
df.loc[idx, 'Keep'] = True
|
102 |
+
else:
|
103 |
+
for pattern in WHITELIST:
|
104 |
+
if pattern in row['Model Path']:
|
105 |
+
df.loc[idx, 'Keep'] = True
|
106 |
+
break
|
107 |
+
|
108 |
+
df = df[df['Keep']]
|
109 |
+
|
110 |
+
# Create the plot
|
111 |
+
fig = plt.figure(figsize=(12, 8))
|
112 |
+
|
113 |
+
# Create scatter plot
|
114 |
+
plt.scatter(df['Model Size'],
|
115 |
+
df['Benchmark Score'],
|
116 |
+
alpha=0.6)
|
117 |
+
|
118 |
+
# Add labels for points
|
119 |
+
for idx, row in df.iterrows():
|
120 |
+
# Get model name - either last part of path or full name for special cases
|
121 |
+
model_name = row['Model Path'].split('/')[-1]
|
122 |
+
if any(pattern in row['Model Path'] for pattern in ['gpt-3', 'gpt-4']):
|
123 |
+
model_name = row['Model Path']
|
124 |
+
|
125 |
+
plt.annotate(model_name,
|
126 |
+
(row['Model Size'], row['Benchmark Score']),
|
127 |
+
xytext=(5, 5), textcoords='offset points',
|
128 |
+
fontsize=8,
|
129 |
+
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=0.5))
|
130 |
+
|
131 |
+
# Plot the Pareto frontier line
|
132 |
+
if frontier_points:
|
133 |
+
frontier_x, frontier_y = zip(*frontier_points)
|
134 |
+
plt.plot(frontier_x, frontier_y, 'r--', label='Pareto frontier')
|
135 |
+
|
136 |
+
# Customize the plot
|
137 |
+
plt.grid(True, linestyle='--', alpha=0.7)
|
138 |
+
plt.xlabel('Model Size (billions of parameters)')
|
139 |
+
plt.ylabel('Benchmark Score')
|
140 |
+
plt.title('Model Performance vs Size (Pareto Frontier)')
|
141 |
+
|
142 |
+
# Add legend
|
143 |
+
plt.legend()
|
144 |
+
|
145 |
+
# Adjust layout to prevent label cutoff
|
146 |
+
plt.tight_layout()
|
147 |
+
|
148 |
+
return fig
|
149 |
+
|
150 |
+
if __name__ == "__main__":
|
151 |
+
# When run as a script, save the plot to a file
|
152 |
+
fig = create_performance_plot()
|
153 |
+
fig.savefig('model_performance.png', dpi=300, bbox_inches='tight')
|
requirements.txt
CHANGED
@@ -2,3 +2,4 @@ tqdm
|
|
2 |
gradio
|
3 |
gradio_client
|
4 |
pandas
|
|
|
|
2 |
gradio
|
3 |
gradio_client
|
4 |
pandas
|
5 |
+
matplotlib
|