Spaces:
Running
Running
File size: 13,701 Bytes
235501b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import pandas as pd
import json
import re
# Load the CSV file
leaderboard_df = []
with open("benchmark_results.csv", "r") as f:
header = f.readline().strip().split(",")
header = [h.strip() for h in header]
for i, line in enumerate(f):
leaderboard_df.append(line.strip().split(",", 13))
# Load metadata
metadata = json.load(open('metadata.json'))
for k, v in list(metadata.items()):
metadata[k.split(",")[0]] = v
# Create DataFrame
leaderboard_df = pd.DataFrame(leaderboard_df, columns=header)
# Filter and process DataFrame
leaderboard_df = leaderboard_df[(leaderboard_df["Benchmark Version"] == "eq-bench_v2_pl") | (
leaderboard_df["Benchmark Version"] == 'eq-bench_pl')]
leaderboard_df = leaderboard_df[["Model Path", "Benchmark Score", "Num Questions Parseable", "Error"]]
def parse_parseable(x):
if x["Num Questions Parseable"] == 'FAILED':
m = re.match(r'(\d+)\.0 questions were parseable', x["Error"])
return m.group(1)
return x["Num Questions Parseable"]
leaderboard_df["Num Questions Parseable"] = leaderboard_df[["Num Questions Parseable", "Error"]].apply(
lambda x: parse_parseable(x), axis=1)
NUMBER_OF_QUESTIONS = 171.0
def fraction_to_percentage(numerator: float, denominator: float) -> float:
return (numerator / denominator) * 100
leaderboard_df["Num Questions Parseable"] = leaderboard_df["Num Questions Parseable"].apply(lambda x: fraction_to_percentage(float(x), NUMBER_OF_QUESTIONS))
def get_params(model_name):
if model_name in metadata:
return metadata[model_name]
else:
print(model_name)
return None
leaderboard_df["Params"] = leaderboard_df["Model Path"].apply(lambda x: get_params(x))
leaderboard_df["Benchmark Score"] = leaderboard_df["Benchmark Score"].replace('FAILED', None)
leaderboard_df["Benchmark Score"] = leaderboard_df["Benchmark Score"].astype(float) * ((leaderboard_df["Num Questions Parseable"].astype(float) / 100))
leaderboard_df.loc[leaderboard_df["Benchmark Score"] < 0, "Benchmark Score"] = 0
leaderboard_df = leaderboard_df.sort_values(by=["Benchmark Score", "Num Questions Parseable"], ascending=[False, False])
leaderboard_df = leaderboard_df.rename(columns={"Model Path": "Model", "Num Questions Parseable": "Percentage Questions Parseable"})
# Generate HTML with DataTables
html = """
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Leaderboard</title>
<link rel="stylesheet" href="https://cdn.datatables.net/1.11.5/css/jquery.dataTables.min.css">
<script src="https://code.jquery.com/jquery-3.6.0.min.js"></script>
<script src="https://cdn.datatables.net/1.11.5/js/jquery.dataTables.min.js"></script>
<style>
body {
font: 90%/1.45em "Helvetica Neue", HelveticaNeue, Verdana, Arial, Helvetica, sans-serif;
margin: 0;
padding: 20px;
color: #333;
background-color: #fff;
}
.numeric-cell {
text-align: right;
padding: 8px !important;
}
</style>
<script>
(function($) {
$.fn.colorize = function(oOptions) {
var settings = $.extend({
parse: function(e) {
return parseFloat(e.html());
},
min: undefined,
max: undefined,
readable: true,
themes: {
"default": {
color_min: "#C80000",
color_mid: "#FFFFFF",
color_max: "#10A54A"
}
},
theme: "default",
center: undefined,
percent: false
}, oOptions);
function getColor(color1, color2, ratio) {
var hex = function(x) {
x = x.toString(16);
return (x.length == 1) ? '0' + x : x;
}
color1 = (color1.charAt(0) == "#") ? color1.slice(1) : color1
color2 = (color2.charAt(0) == "#") ? color2.slice(1) : color2
var r = Math.ceil(parseInt(color1.substring(0,2), 16) * ratio + parseInt(color2.substring(0,2), 16) * (1-ratio));
var g = Math.ceil(parseInt(color1.substring(2,4), 16) * ratio + parseInt(color2.substring(2,4), 16) * (1-ratio));
var b = Math.ceil(parseInt(color1.substring(4,6), 16) * ratio + parseInt(color2.substring(4,6), 16) * (1-ratio));
return "#" + (hex(r) + hex(g) + hex(b)).toUpperCase();
}
function getContrastYIQ(hexcolor) {
var hex = (hexcolor.charAt(0) == "#") ? hexcolor.slice(1) : hexcolor;
var r = parseInt(hex.substr(0,2),16);
var g = parseInt(hex.substr(2,2),16);
var b = parseInt(hex.substr(4,2),16);
var yiq = ((r*299)+(g*587)+(b*114))/1000;
return (yiq >= 128) ? 'black' : 'white';
}
var min = settings.min;
var max = settings.max;
if (min === undefined || max === undefined) {
min = Infinity;
max = -Infinity;
this.each(function() {
var value = parseFloat(settings.parse($(this)));
if (!isNaN(value) && isFinite(value)) {
min = Math.min(min, value);
max = Math.max(max, value);
}
});
}
var center = settings.center !== undefined ? settings.center : (max + min) / 2;
var adj = Math.max(Math.abs(max - center), Math.abs(center - min));
this.each(function() {
var value = parseFloat(settings.parse($(this)));
if (isNaN(value) || !isFinite(value)) return;
var ratio = (value - center) / adj;
var color1, color2;
if (value < center) {
ratio = Math.abs(ratio);
if (ratio > 1) ratio = 1;
color1 = settings.themes[settings.theme].color_min;
color2 = settings.themes[settings.theme].color_mid;
} else {
ratio = Math.abs(ratio);
if (ratio > 1) ratio = 1;
color1 = settings.themes[settings.theme].color_max;
color2 = settings.themes[settings.theme].color_mid;
}
var color = getColor(color1, color2, ratio);
$(this).css('background-color', color);
if (settings.readable)
$(this).css('color', getContrastYIQ(color));
});
return this;
};
}(jQuery));
$(document).ready(function() {
// Add custom filtering function
$.fn.dataTable.ext.search.push(function(settings, data, dataIndex) {
var searchValue = $('.dataTables_filter input').val();
if (!searchValue) return true;
// Split search terms by semicolon and trim whitespace
var searchTerms = searchValue.split(';').map(term => term.trim().toLowerCase());
var modelName = data[0].toLowerCase(); // Model name is in first column
// Return true if ANY search terms are found in the model name (OR logic)
return searchTerms.some(term => modelName.includes(term));
});
// Custom sorting function for benchmark scores
$.fn.dataTable.ext.type.order['score-pre'] = function(data) {
var score = parseFloat(data);
return isNaN(score) ? -Infinity : score;
};
// Get min/max values for each numeric column before initializing DataTables
var columnRanges = {
1: { min: Infinity, max: -Infinity }, // Params
2: { min: Infinity, max: -Infinity }, // Benchmark Score
3: { min: Infinity, max: -Infinity } // Percentage Questions Parseable
};
$('#leaderboard tbody td').each(function() {
var columnIdx = $(this).index();
if (columnIdx in columnRanges) {
var value = parseFloat($(this).text());
if (!isNaN(value) && isFinite(value)) {
columnRanges[columnIdx].min = Math.min(columnRanges[columnIdx].min, value);
columnRanges[columnIdx].max = Math.max(columnRanges[columnIdx].max, value);
}
}
});
var table = $('#leaderboard').DataTable({
"order": [[2, "desc"]], // Sort by Benchmark Score by default
"pageLength": 20, // Show 20 results per page
"lengthMenu": [[10, 20, 50, 100, -1], [10, 20, 50, 100, "All"]], // Update length menu options
"columnDefs": [
{
"targets": [1],
"className": "numeric-cell"
},
{
"type": "score",
"targets": [2], // Apply custom sorting to Benchmark Score column
"className": "numeric-cell"
},
{
"targets": [3],
"className": "numeric-cell"
}
],
"drawCallback": function() {
// Apply colorization with pre-calculated ranges
$("#leaderboard tbody td:nth-child(2)").colorize({
parse: function(e) { return parseFloat($(e).text()); },
min: columnRanges[1].min,
max: columnRanges[1].max,
themes: {
"default": {
color_min: "#10A54A", // White for smaller models
color_mid: "#FFD700", // Gold/yellow for medium models
color_max: "#C80000" // Hot pink for larger models
}
}
});
$("#leaderboard tbody td:nth-child(3)").colorize({
parse: function(e) { return parseFloat($(e).text()); },
min: columnRanges[2].min,
max: columnRanges[2].max,
themes: {
"default": {
color_min: "#C80000", // Red for lower scores
color_mid: "#FFD700", // Gold/yellow for medium scores
color_max: "#10A54A" // Green for higher scores
}
}
});
$("#leaderboard tbody td:nth-child(4)").colorize({
parse: function(e) { return parseFloat($(e).text()); },
min: columnRanges[3].min,
max: columnRanges[3].max,
themes: {
"default": {
color_min: "#C80000", // Red for lower percentages
color_mid: "#FFD700", // Gold/yellow for medium percentages
color_max: "#10A54A" // Green for higher percentages
}
}
});
},
// Override the default search behavior
"search": {
"smart": false
},
// Update search on input change
"initComplete": function() {
var table = this.api();
$('.dataTables_filter input')
.off() // Remove default binding
.on('input', function() {
table.draw();
});
}
});
});
</script>
</head>
<body>
<h1>Leaderboard</h1>
<table id="leaderboard" class="display" style="width:100%">
<thead>
<tr>
<th>Model</th>
<th>Params</th>
<th>Benchmark Score</th>
<th>Percentage Questions Parseable</th>
<th>Error</th>
</tr>
</thead>
<tbody>
"""
# Add rows to the HTML table
for _, row in leaderboard_df.iterrows():
html += f"""
<tr>
<td>{row['Model']}</td>
<td>{row['Params']}</td>
<td>{row['Benchmark Score']:.2f}</td>
<td>{row['Percentage Questions Parseable']:.2f}</td>
<td>{row['Error']}</td>
</tr>
"""
# Close the HTML tags
html += """
</tbody>
</table>
</body>
</html>
"""
# Save the HTML to a file
with open("leaderboard.html", "w") as file:
file.write(html)
print("HTML leaderboard generated and saved as leaderboard.html")
|