AppleSwing commited on
Commit
5ae48b5
·
1 Parent(s): 6073113
src/backend/run_eval_suite.py CHANGED
@@ -17,16 +17,22 @@ def process_results_decorator(func):
17
  end_to_end_time = sum([r[1] for r in results]) / len(results)
18
  prefilling_time = sum([r[2] for r in results]) / len(results)
19
  decoding_throughput = sum([r[3] for r in results]) / len(results)
20
- mfu = sum([r[4] for r in results]) / len(results)
21
- mbu = sum([r[5] for r in results]) / len(results)
 
 
 
22
  # print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, decoding_throughput: {decoding_throughput}")
23
 
24
  result_dict = func(self, doc, processed_results, *args, **kwargs)
25
  result_dict["end_to_end_time"] = end_to_end_time
26
  result_dict["prefilling_time"] = prefilling_time
27
  result_dict["decoding_throughput"] = decoding_throughput
28
- result_dict["mfu"] = mfu
29
- result_dict["mbu"] = mbu
 
 
 
30
  return result_dict
31
  return wrapper
32
  ConfigurableTask.process_results = process_results_decorator(orig_process_results)
@@ -37,8 +43,11 @@ def aggregation_decorator(func):
37
  aggregation_list["end_to_end_time"] = mean
38
  aggregation_list["prefilling_time"] = mean
39
  aggregation_list["decoding_throughput"] = mean
40
- aggregation_list["mfu"] = mean
41
- aggregation_list["mbu"] = mean
 
 
 
42
  return aggregation_list
43
  return wrapper
44
  ConfigurableTask.aggregation = aggregation_decorator(orig_aggregation)
@@ -49,8 +58,11 @@ def higher_is_better_decorator(func):
49
  higher_is_better_dict["end_to_end_time"] = False
50
  higher_is_better_dict["prefilling_time"] = False
51
  higher_is_better_dict["decoding_throughput"] = True
52
- higher_is_better_dict["mfu"] = True
53
- higher_is_better_dict["mbu"] = True
 
 
 
54
  return higher_is_better_dict
55
  return wrapper
56
  ConfigurableTask.higher_is_better = higher_is_better_decorator(orig_higher_is_better)
@@ -65,6 +77,8 @@ from src.backend.tasks.selfcheckgpt.task import SelfCheckGPT
65
 
66
  from src.backend.huggingface_generate_until import HFLMwithChatTemplate
67
  from src.backend.moe_infinity import MoEHFLM
 
 
68
 
69
  def run_evaluation(
70
  eval_request: EvalRequest,
 
17
  end_to_end_time = sum([r[1] for r in results]) / len(results)
18
  prefilling_time = sum([r[2] for r in results]) / len(results)
19
  decoding_throughput = sum([r[3] for r in results]) / len(results)
20
+ decoding_mfu = sum([r[4] for r in results]) / len(results)
21
+ decoding_mbu = sum([r[5] for r in results]) / len(results)
22
+ prefill_throughput = sum([r[6] for r in results]) / len(results)
23
+ prefill_mfu = sum([r[7] for r in results]) / len(results)
24
+ prefill_mbu = sum([r[8] for r in results]) / len(results)
25
  # print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, decoding_throughput: {decoding_throughput}")
26
 
27
  result_dict = func(self, doc, processed_results, *args, **kwargs)
28
  result_dict["end_to_end_time"] = end_to_end_time
29
  result_dict["prefilling_time"] = prefilling_time
30
  result_dict["decoding_throughput"] = decoding_throughput
31
+ result_dict["decoding_mfu"] = decoding_mfu
32
+ result_dict["decoding_mbu"] = decoding_mbu
33
+ result_dict["prefill_throughput"] = prefill_throughput
34
+ result_dict["prefill_mfu"] = prefill_mfu
35
+ result_dict["prefill_mbu"] = prefill_mbu
36
  return result_dict
37
  return wrapper
38
  ConfigurableTask.process_results = process_results_decorator(orig_process_results)
 
43
  aggregation_list["end_to_end_time"] = mean
44
  aggregation_list["prefilling_time"] = mean
45
  aggregation_list["decoding_throughput"] = mean
46
+ aggregation_list["decoding_mfu"] = mean
47
+ aggregation_list["decoding_mbu"] = mean
48
+ aggregation_list["prefill_throughput"] = mean
49
+ aggregation_list["prefill_mfu"] = mean
50
+ aggregation_list["prefill_mbu"] = mean
51
  return aggregation_list
52
  return wrapper
53
  ConfigurableTask.aggregation = aggregation_decorator(orig_aggregation)
 
58
  higher_is_better_dict["end_to_end_time"] = False
59
  higher_is_better_dict["prefilling_time"] = False
60
  higher_is_better_dict["decoding_throughput"] = True
61
+ higher_is_better_dict["decoding_mfu"] = True
62
+ higher_is_better_dict["decoding_mbu"] = True
63
+ higher_is_better_dict["prefill_throughput"] = True
64
+ higher_is_better_dict["prefill_mfu"] = True
65
+ higher_is_better_dict["prefill_mbu"] = True
66
  return higher_is_better_dict
67
  return wrapper
68
  ConfigurableTask.higher_is_better = higher_is_better_decorator(orig_higher_is_better)
 
77
 
78
  from src.backend.huggingface_generate_until import HFLMwithChatTemplate
79
  from src.backend.moe_infinity import MoEHFLM
80
+ from src.backend.vllm import VLLM_MOE
81
+ from src.backend.sglang import SGLangMoE
82
 
83
  def run_evaluation(
84
  eval_request: EvalRequest,
src/backend/tasks/measurement_task_utils.py CHANGED
@@ -12,8 +12,12 @@ def process_results_decorator(func):
12
  end_to_end_time = sum([r[1] for r in results]) / len(results)
13
  prefilling_time = sum([r[2] for r in results]) / len(results)
14
  decoding_throughput = sum([r[3] for r in results]) / len(results)
15
- mfu = sum([r[4] for r in results]) / len(results)
16
- mbu = sum([r[5] for r in results]) / len(results)
 
 
 
 
17
 
18
  # print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, decoding_throughput: {decoding_throughput}")
19
 
@@ -22,8 +26,11 @@ def process_results_decorator(func):
22
  result_dict["end_to_end_time"] = end_to_end_time
23
  result_dict["prefilling_time"] = prefilling_time
24
  result_dict["decoding_throughput"] = decoding_throughput
25
- result_dict["mfu"] = mfu
26
- result_dict["mbu"] = mbu
 
 
 
27
  return result_dict
28
  return wrapper
29
 
@@ -35,8 +42,11 @@ def aggregation_decorator(func):
35
  aggregation_list["end_to_end_time"] = mean
36
  aggregation_list["prefilling_time"] = mean
37
  aggregation_list["decoding_throughput"] = mean
38
- aggregation_list["mfu"] = mean
39
- aggregation_list["mbu"] = mean
 
 
 
40
  return aggregation_list
41
  return wrapper
42
 
@@ -48,8 +58,11 @@ def higher_is_better_decorator(func):
48
  higher_is_better_dict["end_to_end_time"] = False
49
  higher_is_better_dict["prefilling_time"] = False
50
  higher_is_better_dict["decoding_throughput"] = True
51
- higher_is_better_dict["mfu"] = True
52
- higher_is_better_dict["mbu"] = True
 
 
 
53
  return higher_is_better_dict
54
  return wrapper
55
 
 
12
  end_to_end_time = sum([r[1] for r in results]) / len(results)
13
  prefilling_time = sum([r[2] for r in results]) / len(results)
14
  decoding_throughput = sum([r[3] for r in results]) / len(results)
15
+ decoding_mfu = sum([r[4] for r in results]) / len(results)
16
+ decoding_mbu = sum([r[5] for r in results]) / len(results)
17
+ prefill_throughput = sum([r[6] for r in results]) / len(results)
18
+ prefill_mfu = sum([r[7] for r in results]) / len(results)
19
+ prefill_mbu = sum([r[8] for r in results]) / len(results)
20
+
21
 
22
  # print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, decoding_throughput: {decoding_throughput}")
23
 
 
26
  result_dict["end_to_end_time"] = end_to_end_time
27
  result_dict["prefilling_time"] = prefilling_time
28
  result_dict["decoding_throughput"] = decoding_throughput
29
+ result_dict["decoding_mfu"] = decoding_mfu
30
+ result_dict["decoding_mbu"] = decoding_mbu
31
+ result_dict["prefill_throughput"] = prefill_throughput
32
+ result_dict["prefill_mfu"] = prefill_mfu
33
+ result_dict["prefill_mbu"] = prefill_mbu
34
  return result_dict
35
  return wrapper
36
 
 
42
  aggregation_list["end_to_end_time"] = mean
43
  aggregation_list["prefilling_time"] = mean
44
  aggregation_list["decoding_throughput"] = mean
45
+ aggregation_list["decoding_mfu"] = mean
46
+ aggregation_list["decoding_mbu"] = mean
47
+ aggregation_list["prefill_throughput"] = mean
48
+ aggregation_list["prefill_mfu"] = mean
49
+ aggregation_list["prefill_mbu"] = mean
50
  return aggregation_list
51
  return wrapper
52
 
 
58
  higher_is_better_dict["end_to_end_time"] = False
59
  higher_is_better_dict["prefilling_time"] = False
60
  higher_is_better_dict["decoding_throughput"] = True
61
+ higher_is_better_dict["decoding_mfu"] = True
62
+ higher_is_better_dict["decoding_mbu"] = True
63
+ higher_is_better_dict["prefill_throughput"] = True
64
+ higher_is_better_dict["prefill_mfu"] = True
65
+ higher_is_better_dict["prefill_mbu"] = True
66
  return higher_is_better_dict
67
  return wrapper
68
 
src/display/utils.py CHANGED
@@ -9,25 +9,32 @@ def fields(raw_class):
9
 
10
  E2Es = "E2E(s)" #"End-to-end time (s)"
11
  PREs = "PRE(s)" #"Prefilling time (s)"
12
- TS = "T/s" #Decoding throughput (tok/s)
 
13
  InFrame = "Method" #"Inference framework"
14
  MULTIPLE_CHOICEs = ["mmlu"]
15
 
 
16
  GPU_TEMP = 'Temp(C)'
17
  GPU_Power = 'Power(W)'
18
  GPU_Mem = 'Mem(G)'
19
  GPU_Name = "GPU"
20
  GPU_Util = 'Util(%)'
21
- MFU = 'S-MFU(%)'
22
- MBU = 'S-MBU(%)'
 
 
23
  BATCH_SIZE = 'bs'
24
  PRECISION = "Precision"
25
  system_metrics_to_name_map = {
26
  "end_to_end_time": f"{E2Es}",
27
  "prefilling_time": f"{PREs}",
28
  "decoding_throughput": f"{TS}",
29
- "mfu": f"{MFU}",
30
- "mbu": f"{MBU}"
 
 
 
31
  }
32
 
33
  gpu_metrics_to_name_map = {
@@ -78,10 +85,11 @@ class Tasks(Enum):
78
 
79
  # # XXX include me back at some point
80
  # selfcheck = Task("selfcheckgpt", "max-selfcheckgpt", "SelfCheckGPT")
81
- mmlu = Task("mmlu", "acc", "MMLU") #MMLU/Acc (5-shot)
82
  gsm8k = Task("gsm8k_custom", "em", "GSM8K") #GSM8K/EM (5-shot)
83
  # gsm8k_cot = Task("gsm8k_cot", "em", "GSM8K COT") #GSM8K COT/EM (5-shot)
84
  arena_hard = Task("arena_hard", "score", "Arena Hard") #Arena Hard/Score
 
85
 
86
 
87
  # These classes are for user facing column names,
@@ -121,8 +129,14 @@ for task in Tasks:
121
  continue
122
  auto_eval_column_dict.append([f"{task.name}_prefilling_time", ColumnContent, ColumnContent(f"{task.value.col_name} {PREs}", "number", False, hidden=True)])
123
  auto_eval_column_dict.append([f"{task.name}_decoding_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {TS}", "number", True, hidden=True)])
124
- auto_eval_column_dict.append([f"{task.name}_mbu", ColumnContent, ColumnContent(f"{task.value.col_name} {MBU}", "number", True, hidden=True)])
125
- auto_eval_column_dict.append([f"{task.name}_mfu", ColumnContent, ColumnContent(f"{task.value.col_name} {MFU}", "number", True, hidden=True)])
 
 
 
 
 
 
126
 
127
 
128
  # Model information
@@ -187,8 +201,9 @@ class InferenceFramework(Enum):
187
  # MoE_Infinity = ModelDetails("moe-infinity")
188
  HF_Chat = ModelDetails("hf-chat")
189
  VLLM = ModelDetails("vllm_moe")
190
- TRTLLM = ModelDetails("tensorrt_llm")
191
  VLLM_FIX = ModelDetails("vllm_moe_fixbs")
 
 
192
  Unknown = ModelDetails("?")
193
 
194
  def to_str(self):
@@ -206,10 +221,13 @@ class InferenceFramework(Enum):
206
  return InferenceFramework.VLLM
207
  if inference_framework in ["vllm_moe_fixbs"]:
208
  return InferenceFramework.VLLM_FIX
 
 
209
  return InferenceFramework.Unknown
210
 
211
  class GPUType(Enum):
212
  A100_sxm = ModelDetails("NVIDIA-A100-SXM4-80GB")
 
213
  A100_pcie = ModelDetails("NVIDIA-A100-PCIe-80GB")
214
  Unknown = ModelDetails("?")
215
 
 
9
 
10
  E2Es = "E2E(s)" #"End-to-end time (s)"
11
  PREs = "PRE(s)" #"Prefilling time (s)"
12
+ TS = "Decoding T/s" #Decoding throughput (tok/s)
13
+ PTS = "Prefill T/s" #Prefill throughput (tok/s)
14
  InFrame = "Method" #"Inference framework"
15
  MULTIPLE_CHOICEs = ["mmlu"]
16
 
17
+
18
  GPU_TEMP = 'Temp(C)'
19
  GPU_Power = 'Power(W)'
20
  GPU_Mem = 'Mem(G)'
21
  GPU_Name = "GPU"
22
  GPU_Util = 'Util(%)'
23
+ DSMFU = 'Decoding S-MFU(%)'
24
+ DSMBU = 'Decoding S-MBU(%)'
25
+ PSMFU = 'Prefill S-MFU(%)'
26
+ PSMBU = 'Prefill S-MBU(%)'
27
  BATCH_SIZE = 'bs'
28
  PRECISION = "Precision"
29
  system_metrics_to_name_map = {
30
  "end_to_end_time": f"{E2Es}",
31
  "prefilling_time": f"{PREs}",
32
  "decoding_throughput": f"{TS}",
33
+ "decoding_mfu": f"{DSMFU}",
34
+ "decoding_mbu": f"{DSMBU}",
35
+ "prefill_throughput": f"{PTS}",
36
+ "prefill_mfu": f"{PSMFU}",
37
+ "prefill_mbu": f"{PSMBU}",
38
  }
39
 
40
  gpu_metrics_to_name_map = {
 
85
 
86
  # # XXX include me back at some point
87
  # selfcheck = Task("selfcheckgpt", "max-selfcheckgpt", "SelfCheckGPT")
88
+ # selfcheck = Task("selfcheckgpt", "max-selfcheckgpt", "SelfCheckGPT")
89
  gsm8k = Task("gsm8k_custom", "em", "GSM8K") #GSM8K/EM (5-shot)
90
  # gsm8k_cot = Task("gsm8k_cot", "em", "GSM8K COT") #GSM8K COT/EM (5-shot)
91
  arena_hard = Task("arena_hard", "score", "Arena Hard") #Arena Hard/Score
92
+ mmlu = Task("mmlu", "acc", "MMLU") #MMLU/Acc (5-shot)
93
 
94
 
95
  # These classes are for user facing column names,
 
129
  continue
130
  auto_eval_column_dict.append([f"{task.name}_prefilling_time", ColumnContent, ColumnContent(f"{task.value.col_name} {PREs}", "number", False, hidden=True)])
131
  auto_eval_column_dict.append([f"{task.name}_decoding_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {TS}", "number", True, hidden=True)])
132
+ # if task.value.benchmark != "gsm8k_custom":
133
+ # continue
134
+ auto_eval_column_dict.append([f"{task.name}_decoding_mbu", ColumnContent, ColumnContent(f"{task.value.col_name} {DSMBU}", "number", True, hidden=True)])
135
+ auto_eval_column_dict.append([f"{task.name}_decoding_mfu", ColumnContent, ColumnContent(f"{task.value.col_name} {DSMFU}", "number", True, hidden=True)])
136
+ auto_eval_column_dict.append([f"{task.name}_prefill_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {PTS}", "number", True, hidden=True)])
137
+ auto_eval_column_dict.append([f"{task.name}_prefill_mbu", ColumnContent, ColumnContent(f"{task.value.col_name} {PSMBU}", "number", True, hidden=True)])
138
+ auto_eval_column_dict.append([f"{task.name}_prefill_mfu", ColumnContent, ColumnContent(f"{task.value.col_name} {PSMFU}", "number", True, hidden=True)])
139
+
140
 
141
 
142
  # Model information
 
201
  # MoE_Infinity = ModelDetails("moe-infinity")
202
  HF_Chat = ModelDetails("hf-chat")
203
  VLLM = ModelDetails("vllm_moe")
 
204
  VLLM_FIX = ModelDetails("vllm_moe_fixbs")
205
+ TRTLLM = ModelDetails("tensorrt_llm")
206
+ SGLANG = ModelDetails("sglang")
207
  Unknown = ModelDetails("?")
208
 
209
  def to_str(self):
 
221
  return InferenceFramework.VLLM
222
  if inference_framework in ["vllm_moe_fixbs"]:
223
  return InferenceFramework.VLLM_FIX
224
+ if inference_framework in ["sglang"]:
225
+ return InferenceFramework.SGLANG
226
  return InferenceFramework.Unknown
227
 
228
  class GPUType(Enum):
229
  A100_sxm = ModelDetails("NVIDIA-A100-SXM4-80GB")
230
+ A100_sxm4 = ModelDetails("NVIDIA-A100-SMX4-80GB")
231
  A100_pcie = ModelDetails("NVIDIA-A100-PCIe-80GB")
232
  Unknown = ModelDetails("?")
233
 
src/utils.py CHANGED
@@ -4,6 +4,8 @@ import subprocess
4
  import re
5
  import os
6
  import GPUtil
 
 
7
 
8
  try:
9
  from src.display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
@@ -12,44 +14,63 @@ except:
12
  from display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
13
 
14
  MEM_BW_DICT ={
15
- "NVIDIA-A100-PCIe-80GB": 1935,
16
- "NVIDIA-A100-SXM-80GB": 2039,
17
- "NVIDIA-H100-PCIe-80GB": 2039,
18
- "NVIDIA-RTX-A5000-24GB": 768
 
19
  }
20
 
21
  PEAK_FLOPS_DICT = {
22
  "float32":{
23
  "NVIDIA-A100-PCIe-80GB": 312e12,
24
- "NVIDIA-A100-SXM-80GB": 312e12,
25
  "NVIDIA-H100-PCIe-80GB": 756e12,
26
- "NVIDIA-RTX-A5000-24GB": 222.2e12
 
27
  },
28
  "float16":{
29
  "NVIDIA-A100-PCIe-80GB": 624e12,
30
- "NVIDIA-A100-SXM-80GB": 624e12,
31
  "NVIDIA-H100-PCIe-80GB": 1513e12,
32
- "NVIDIA-RTX-A5000-24GB": 444.4e12
 
33
  },
34
  "bfloat16":{
35
  "NVIDIA-A100-PCIe-80GB": 624e12,
36
- "NVIDIA-A100-SXM-80GB": 624e12,
37
  "NVIDIA-H100-PCIe-80GB": 1513e12,
38
- "NVIDIA-RTX-A5000-24GB": 444.4e12
 
39
  },
40
- "8bit":{
41
  "NVIDIA-A100-PCIe-80GB": 1248e12,
42
- "NVIDIA-A100-SXM-80GB": 1248e12,
43
  "NVIDIA-H100-PCIe-80GB": 3026e12,
44
- "NVIDIA-RTX-A5000-24GB": 889e12
 
45
  },
46
- "4bit": {
47
- "NVIDIA-A100-PCIe-80GB": 2496e12,
48
- "NVIDIA-A100-SXM-80GB": 2496e12,
49
- "NVIDIA-H100-PCIe-80GB": 6052e12,
50
- "NVIDIA-RTX-A5000-24GB": 1778e12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  }
52
-
53
  }
54
 
55
  def my_snapshot_download(repo_id, revision, local_dir, repo_type, max_workers):
@@ -97,7 +118,7 @@ def parse_nvidia_smi():
97
  # print(f"gpu_indices: {gpu_indices}")
98
  gpu_stats = []
99
 
100
- gpu_info_pattern = re.compile(r'(\d+)C\s+P\d+\s+(\d+)W / \d+W\s+\|\s+(\d+)MiB / \d+MiB\s+\|\s+(\d+)%')
101
  # gpu_name_pattern = re.compile(r'NVIDIA\s+([\w\s]+\d+(?:\s*GB)?)')
102
  gpu_name_pattern = re.compile(r'NVIDIA\s+(RTX\s+)?([A-Z0-9]+)')
103
 
@@ -195,17 +216,790 @@ def get_peak_bw(gpu_name):
195
  def get_peak_flops(gpu_name, precision):
196
  return PEAK_FLOPS_DICT[precision][gpu_name]
197
 
198
- def transfer_precision2bytes(precision):
199
- if precision == "float32":
200
- return 4
201
- elif precision in ["float16", "bfloat16"]:
202
- return 2
203
- elif precision == "8bit":
204
- return 1
205
- elif precision == "4bit":
206
- return 0.5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
207
  else:
208
- raise ValueError(f"Unsupported precision: {precision}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209
 
210
- if __name__ == "__main__":
211
- print(analyze_gpu_stats(parse_nvidia_smi()))
 
 
4
  import re
5
  import os
6
  import GPUtil
7
+ from transformers import AutoConfig
8
+ from typing import List
9
 
10
  try:
11
  from src.display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
 
14
  from display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
15
 
16
  MEM_BW_DICT ={
17
+ "NVIDIA-A100-PCIe-80GB": 1935e9,
18
+ "NVIDIA-A100-SXM4-80GB": 2039e9,
19
+ "NVIDIA-H100-PCIe-80GB": 2039e9,
20
+ "NVIDIA-RTX-A5000-24GB": 768e9,
21
+ "NVIDIA-RTX-A6000-48GB": 768e9,
22
  }
23
 
24
  PEAK_FLOPS_DICT = {
25
  "float32":{
26
  "NVIDIA-A100-PCIe-80GB": 312e12,
27
+ "NVIDIA-A100-SXM4-80GB": 312e12,
28
  "NVIDIA-H100-PCIe-80GB": 756e12,
29
+ "NVIDIA-RTX-A5000-24GB": 222.2e12,
30
+ "NVIDIA-RTX-A6000-48GB": 309.7e12
31
  },
32
  "float16":{
33
  "NVIDIA-A100-PCIe-80GB": 624e12,
34
+ "NVIDIA-A100-SXM4-80GB": 624e12,
35
  "NVIDIA-H100-PCIe-80GB": 1513e12,
36
+ "NVIDIA-RTX-A5000-24GB": 222.2e12,
37
+ "NVIDIA-RTX-A6000-48GB": 309.7e12
38
  },
39
  "bfloat16":{
40
  "NVIDIA-A100-PCIe-80GB": 624e12,
41
+ "NVIDIA-A100-SXM4-80GB": 624e12,
42
  "NVIDIA-H100-PCIe-80GB": 1513e12,
43
+ "NVIDIA-RTX-A5000-24GB": 222.2e12,
44
+ "NVIDIA-RTX-A6000-48GB": 309.7e12
45
  },
46
+ "int8":{
47
  "NVIDIA-A100-PCIe-80GB": 1248e12,
48
+ "NVIDIA-A100-SXM4-80GB": 1248e12,
49
  "NVIDIA-H100-PCIe-80GB": 3026e12,
50
+ "NVIDIA-RTX-A5000-24GB": 222.2e12,
51
+ "NVIDIA-RTX-A6000-48GB": 309.7e12
52
  },
53
+ "fp8":{
54
+ "NVIDIA-A100-PCIe-80GB": 1248e12,
55
+ "NVIDIA-A100-SXM4-80GB": 1248e12,
56
+ "NVIDIA-H100-PCIe-80GB": 3026e12,
57
+ "NVIDIA-RTX-A5000-24GB": 0,
58
+ "NVIDIA-RTX-A6000-48GB": 0
59
+ },
60
+ "fp4": {
61
+ "NVIDIA-A100-PCIe-80GB": 1248e12,
62
+ "NVIDIA-A100-SXM4-80GB": 1248e12,
63
+ "NVIDIA-H100-PCIe-80GB": 3026e12,
64
+ "NVIDIA-RTX-A5000-24GB": 0,
65
+ "NVIDIA-RTX-A6000-48GB": 0
66
+ },
67
+ "int4": {
68
+ "NVIDIA-A100-PCIe-80GB": 1248e12,
69
+ "NVIDIA-A100-SXM4-80GB": 1248e12,
70
+ "NVIDIA-H100-PCIe-80GB": 3026e12,
71
+ "NVIDIA-RTX-A5000-24GB": 222.2e12,
72
+ "NVIDIA-RTX-A6000-48GB": 309.7e12
73
  }
 
74
  }
75
 
76
  def my_snapshot_download(repo_id, revision, local_dir, repo_type, max_workers):
 
118
  # print(f"gpu_indices: {gpu_indices}")
119
  gpu_stats = []
120
 
121
+ gpu_info_pattern = re.compile(r'(\d+)C\s+P\d+\s+(\d+)W\s*/\s*\d+W\s*\|\s*(\d+)MiB\s*/\s*\d+MiB\s*\|\s*(\d+)%')
122
  # gpu_name_pattern = re.compile(r'NVIDIA\s+([\w\s]+\d+(?:\s*GB)?)')
123
  gpu_name_pattern = re.compile(r'NVIDIA\s+(RTX\s+)?([A-Z0-9]+)')
124
 
 
216
  def get_peak_flops(gpu_name, precision):
217
  return PEAK_FLOPS_DICT[precision][gpu_name]
218
 
219
+ def _calculate_batch_metrics(outputs, decoding_tp, n_layers, d_model,
220
+ n_attn_heads, d_head, n_kv_heads, n_experts_per_tok, d_ff,
221
+ avg_activated_experts, hf_config, num_gpus, model_name,
222
+ used_dtype, batch_size, precision):
223
+ """Calculate metrics for a batch of outputs"""
224
+ gpu_type = get_gpu_details()
225
+ hardware_specs = {
226
+ "peak_bandwidth_tb": get_peak_bw(gpu_type) / 1e12,
227
+ "peak_flops_tf": get_peak_flops(gpu_type, precision=used_dtype) / 1e12,
228
+ }
229
+ kvs = []
230
+ true_kvs = []
231
+ attn_score = []
232
+
233
+ # Calculate KV sizes
234
+ per_token_kv_size = 2 * n_layers * d_head * n_kv_heads # Default calculation
235
+
236
+ if "DeepSeek" in model_name:
237
+ if hasattr(hf_config, "kv_lora_rank") and hasattr(hf_config, "qk_rope_head_dim"):
238
+ per_token_kv_size = n_layers * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)
239
+
240
+ # Process each output
241
+ for x in outputs:
242
+ output_len = len(x.outputs[0].token_ids)
243
+ context_prefill_size = len(x.prompt_token_ids)
244
+
245
+ # Calculate attention scores
246
+ if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim"):
247
+ q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
248
+ origin_per_token_k_state_size = n_layers * n_attn_heads * q_head_dim
249
+ origin_per_token_v_state_size = n_layers * n_attn_heads * hf_config.v_head_dim
250
+ attention_score = context_prefill_size * origin_per_token_k_state_size + (output_len - 1) * origin_per_token_k_state_size / 2
251
+ attention_score += context_prefill_size * origin_per_token_v_state_size + (output_len - 1) * origin_per_token_v_state_size / 2
252
+ attention_score = attention_score / 1e12
253
+ else:
254
+ origin_per_token_kv_states_size = n_layers * n_attn_heads * d_head
255
+ attention_score = context_prefill_size * origin_per_token_kv_states_size + (output_len - 1) * origin_per_token_kv_states_size / 2
256
+ attention_score = attention_score * 2 / 1e12
257
+
258
+ # Store attention scores and KV sizes
259
+ attn_score.append(attention_score)
260
+ kv_size = context_prefill_size * per_token_kv_size + (output_len - 1) * per_token_kv_size / 2
261
+ kv_size = kv_size / 1e12
262
+ true_kv = (context_prefill_size * per_token_kv_size + output_len * per_token_kv_size) / 1e12 * 1e3
263
+ kvs.append(kv_size)
264
+ true_kvs.append(true_kv)
265
+
266
+ # Calculate aggregate values
267
+ kv_size = sum(kvs)
268
+ true_kv_size = sum(true_kvs) * 1e3
269
+ attention_score = sum(attn_score) / len(attn_score)
270
+
271
+ # Calculate attention size per token
272
+ if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim") and hasattr(hf_config, "kv_lora_rank"):
273
+ q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
274
+ if not hasattr(hf_config, "q_lora_rank") or not hf_config.q_lora_rank:
275
+ attention_size_per_token = (d_model * n_attn_heads * q_head_dim) + \
276
+ (d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \
277
+ (hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \
278
+ (hf_config.v_head_dim * n_attn_heads * d_model)
279
+ attention_size_per_token = attention_size_per_token / 1e12
280
+ else:
281
+ attention_size_per_token = (d_model * hf_config.q_lora_rank) + \
282
+ (hf_config.q_lora_rank * n_attn_heads * q_head_dim) + \
283
+ (d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \
284
+ (hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \
285
+ (hf_config.v_head_dim * n_attn_heads * d_model)
286
+ attention_size_per_token = attention_size_per_token / 1e12
287
+ else:
288
+ attention_size_per_token = d_model * (n_attn_heads * d_head + n_kv_heads * d_head * 2) + n_attn_heads * d_head * d_model
289
+ attention_size_per_token = attention_size_per_token / 1e12
290
+
291
+ # Calculate expert sizes
292
+ expert_size = d_ff * 3 * d_model / 1e12
293
+ shared_experts_size_total = 0
294
+ deepseek_dense_ffn_size = 0
295
+ deepseek_sparse_layer_num = 0
296
+
297
+ if "Qwen" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "shared_expert_intermediate_size"):
298
+ d_ff = hf_config.moe_intermediate_size
299
+ d_ff_share = hf_config.shared_expert_intermediate_size
300
+ shared_experts_size = d_ff_share * 3 * d_model
301
+ expert_size = d_ff * 3 * d_model
302
+ shared_experts_size_total = shared_experts_size / 1e12
303
+ expert_size = expert_size / 1e12
304
+ elif "Qwen3" in model_name and hasattr(hf_config, "moe_intermediate_size"):
305
+ d_ff = hf_config.moe_intermediate_size
306
+ expert_size = d_ff * 3 * d_model
307
+ expert_size = expert_size / 1e12
308
+ elif "DeepSeek" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "intermediate_size") and hasattr(hf_config, "first_k_dense_replace"):
309
+ d_ff = hf_config.moe_intermediate_size
310
+ d_ff_dense = hf_config.intermediate_size
311
+ deepseek_num_dense_layer = hf_config.first_k_dense_replace
312
+ shared_experts_size = d_ff * 3 * d_model
313
+ expert_size = d_ff * 3 * d_model
314
+ shared_experts = 2
315
+ shared_experts_size_total = shared_experts_size * shared_experts / 1e12
316
+ expert_size = expert_size / 1e12
317
+ deepseek_sparse_layer_num = n_layers - deepseek_num_dense_layer
318
+ deepseek_dense_ffn_size = d_ff_dense * 3 * d_model / 1e12
319
+
320
+ # Calculate S-MBU and S-MFU
321
+ if "Qwen" in model_name and not "Qwen3" in model_name:
322
+ smbu = ((n_layers*(avg_activated_experts * expert_size + shared_experts_size_total + attention_size_per_token) +
323
+ kv_size) * precision/ (batch_size / decoding_tp)) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
324
+ smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size + shared_experts_size_total) + attention_score) \
325
+ * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
326
+ elif "Qwen3" in model_name:
327
+ smbu = ((n_layers * (avg_activated_experts * expert_size + attention_size_per_token) +
328
+ kv_size) * precision/ (batch_size / decoding_tp)) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
329
+ smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \
330
+ * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
331
+ elif "DeepSeek" in model_name:
332
+ smbu = ((n_layers * attention_size_per_token + deepseek_sparse_layer_num * \
333
+ (avg_activated_experts * expert_size + shared_experts_size_total) + \
334
+ deepseek_num_dense_layer * deepseek_dense_ffn_size + \
335
+ kv_size) * precision/ (batch_size / decoding_tp)) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
336
+ smfu = (n_layers * attention_size_per_token + deepseek_sparse_layer_num * \
337
+ (n_experts_per_tok * expert_size + shared_experts_size_total) + \
338
+ deepseek_num_dense_layer * deepseek_dense_ffn_size + attention_score) \
339
+ * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
340
+ else:
341
+ smbu = ((n_layers*(avg_activated_experts * expert_size + attention_size_per_token) +
342
+ kv_size) * precision/ (batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
343
+ smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \
344
+ * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
345
+
346
+ return {
347
+ 'smbu': smbu,
348
+ 'smfu': smfu,
349
+ 'kv_size': true_kv_size,
350
+ 'decoding_throughput': decoding_tp
351
+ }
352
+
353
+ def _calculate_batch_metrics_sglang(outputs, decoding_tp, n_layers, d_model,
354
+ n_attn_heads, d_head, n_kv_heads, n_experts_per_tok, d_ff,
355
+ avg_activated_experts, hf_config, num_gpus, model_name,
356
+ used_dtype, batch_size, precision, ttft=None, prefill_tp=None):
357
+ """Calculate metrics for a batch of outputs"""
358
+ # Initialize hardware specs and output lists
359
+ hardware_specs = _get_hardware_specs(used_dtype)
360
+ output_data = _extract_output_data(outputs)
361
+
362
+ # Calculate model-specific sizes
363
+ per_token_kv_size = _calculate_kv_size(model_name, hf_config, n_layers, d_head, n_kv_heads)
364
+ attention_size_per_token = _calculate_attention_size(model_name, hf_config, d_model, n_attn_heads, d_head, n_kv_heads)
365
+ expert_config = _calculate_expert_config(model_name, hf_config, d_ff, d_model, n_layers)
366
+
367
+ # Process outputs and calculate metrics
368
+ metrics_data = _process_outputs(output_data, per_token_kv_size, attention_size_per_token,
369
+ model_name, hf_config, n_layers, n_attn_heads, d_head)
370
+
371
+ # Calculate throughput metrics
372
+ if ttft is None or prefill_tp is None:
373
+ ttft, prefill_tp = _calculate_throughput_metrics(batch_size, output_data['prefill_lengths'],
374
+ output_data['max_duration'])
375
+
376
+
377
+ # Calculate S-MBU and S-MFU
378
+ smbu_smfu_metrics = _calculate_smbu_smfu(model_name, n_layers, attention_size_per_token,
379
+ expert_config, avg_activated_experts, metrics_data,
380
+ hardware_specs, num_gpus, precision, ttft, prefill_tp,
381
+ batch_size, decoding_tp)
382
+
383
+ return {
384
+ 'prefill_smbu': smbu_smfu_metrics['prefill_smbu'],
385
+ 'prefill_smfu': smbu_smfu_metrics['prefill_smfu'],
386
+ 'decoding_smbu': smbu_smfu_metrics['decoding_smbu'],
387
+ 'decoding_smfu': smbu_smfu_metrics['decoding_smfu'],
388
+ 'kv_size': metrics_data['true_kv_size'],
389
+ 'decoding_throughput': decoding_tp,
390
+ 'prefill_tp': prefill_tp,
391
+ 'ttft': ttft
392
+ }
393
+
394
+
395
+ def _get_hardware_specs(used_dtype):
396
+ """Get hardware specifications"""
397
+ gpu_type = get_gpu_details()
398
+ return {
399
+ "peak_bandwidth_tb": get_peak_bw(gpu_type) / 1e12,
400
+ "peak_flops_tf": get_peak_flops(gpu_type, precision=used_dtype) / 1e12,
401
+ }
402
+
403
+
404
+ def _extract_output_data(outputs):
405
+ """Extract relevant data from outputs"""
406
+ prefill_lengths = []
407
+ output_lengths = []
408
+ max_duration = 0.0
409
+
410
+ for x in outputs:
411
+ output_lengths.append(x['meta_info']['completion_tokens'])
412
+ prefill_lengths.append(x['meta_info']['prompt_tokens'])
413
+ max_duration = max(max_duration, x['meta_info']['e2e_latency'])
414
+
415
+ return {
416
+ 'prefill_lengths': prefill_lengths,
417
+ 'output_lengths': output_lengths,
418
+ 'max_duration': max_duration
419
+ }
420
+
421
+
422
+ def _calculate_kv_size(model_name, hf_config, n_layers, d_head, n_kv_heads):
423
+ """Calculate per-token KV size based on model type"""
424
+ if "DeepSeek" in model_name and hasattr(hf_config, "kv_lora_rank") and hasattr(hf_config, "qk_rope_head_dim"):
425
+ return n_layers * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)
426
+ return 2 * n_layers * d_head * n_kv_heads
427
+
428
+
429
+ def _calculate_attention_size(model_name, hf_config, d_model, n_attn_heads, d_head, n_kv_heads):
430
+ """Calculate attention size per token based on model type"""
431
+ if ("DeepSeek" in model_name and
432
+ hasattr(hf_config, "qk_rope_head_dim") and
433
+ hasattr(hf_config, "qk_nope_head_dim") and
434
+ hasattr(hf_config, "v_head_dim") and
435
+ hasattr(hf_config, "kv_lora_rank")):
436
+
437
+ return _calculate_deepseek_attention_size(hf_config, d_model, n_attn_heads)
438
+
439
+ return (d_model * (n_attn_heads * d_head + n_kv_heads * d_head * 2) +
440
+ n_attn_heads * d_head * d_model) / 1e12
441
+
442
+
443
+ def _calculate_deepseek_attention_size(hf_config, d_model, n_attn_heads):
444
+ """Calculate DeepSeek-specific attention size"""
445
+ q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
446
+
447
+ base_size = ((d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) +
448
+ (hf_config.kv_lora_rank * n_attn_heads *
449
+ (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) +
450
+ (hf_config.v_head_dim * n_attn_heads * d_model))
451
+
452
+ if hasattr(hf_config, "q_lora_rank") and hf_config.q_lora_rank:
453
+ q_size = (d_model * hf_config.q_lora_rank +
454
+ hf_config.q_lora_rank * n_attn_heads * q_head_dim)
455
+ else:
456
+ q_size = d_model * n_attn_heads * q_head_dim
457
+
458
+ return (base_size + q_size) / 1e12
459
+
460
+
461
+ def _calculate_expert_config(model_name, hf_config, d_ff, d_model, n_layers):
462
+ """Calculate expert configuration based on model type"""
463
+ config = {
464
+ 'expert_size': d_ff * 3 * d_model / 1e12,
465
+ 'shared_experts_size_total': 0,
466
+ 'deepseek_dense_ffn_size': 0,
467
+ 'deepseek_sparse_layer_num': 0,
468
+ 'deepseek_num_dense_layer': 0
469
+ }
470
+
471
+ if "Qwen" in model_name and not "Qwen3" in model_name:
472
+ config.update(_get_qwen_expert_config(hf_config, d_model))
473
+ elif "Qwen3" in model_name:
474
+ config.update(_get_qwen3_expert_config(hf_config, d_model))
475
+ elif "DeepSeek" in model_name:
476
+ config.update(_get_deepseek_expert_config(hf_config, d_model, n_layers))
477
+
478
+ return config
479
+
480
+
481
+ def _get_qwen_expert_config(hf_config, d_model):
482
+ """Get Qwen-specific expert configuration"""
483
+ if (hasattr(hf_config, "moe_intermediate_size") and
484
+ hasattr(hf_config, "shared_expert_intermediate_size")):
485
+
486
+ return {
487
+ 'expert_size': hf_config.moe_intermediate_size * 3 * d_model / 1e12,
488
+ 'shared_experts_size_total': hf_config.shared_expert_intermediate_size * 3 * d_model / 1e12
489
+ }
490
+ return {}
491
+
492
+
493
+ def _get_qwen3_expert_config(hf_config, d_model):
494
+ """Get Qwen3-specific expert configuration"""
495
+ if hasattr(hf_config, "moe_intermediate_size"):
496
+ return {
497
+ 'expert_size': hf_config.moe_intermediate_size * 3 * d_model / 1e12
498
+ }
499
+ return {}
500
+
501
+
502
+ def _get_deepseek_expert_config(hf_config, d_model, n_layers):
503
+ """Get DeepSeek-specific expert configuration"""
504
+ if (hasattr(hf_config, "moe_intermediate_size") and
505
+ hasattr(hf_config, "intermediate_size") and
506
+ hasattr(hf_config, "first_k_dense_replace")):
507
+
508
+ deepseek_num_dense_layer = hf_config.first_k_dense_replace
509
+ return {
510
+ 'expert_size': hf_config.moe_intermediate_size * 3 * d_model / 1e12,
511
+ 'shared_experts_size_total': hf_config.moe_intermediate_size * 3 * d_model * 2 / 1e12,
512
+ 'deepseek_dense_ffn_size': hf_config.intermediate_size * 3 * d_model / 1e12,
513
+ 'deepseek_sparse_layer_num': n_layers - deepseek_num_dense_layer,
514
+ 'deepseek_num_dense_layer': deepseek_num_dense_layer
515
+ }
516
+ return {}
517
+
518
+
519
+ def _process_outputs(output_data, per_token_kv_size, attention_size_per_token,
520
+ model_name, hf_config, n_layers, n_attn_heads, d_head):
521
+ """Process outputs to calculate KV sizes and attention scores"""
522
+ kvs = []
523
+ true_kvs = []
524
+ attn_scores = []
525
+
526
+ for prefill_len, output_len in zip(output_data['prefill_lengths'], output_data['output_lengths']):
527
+ # Calculate attention score
528
+ attn_score = _calculate_attention_score(model_name, hf_config, prefill_len, output_len,
529
+ n_layers, n_attn_heads, d_head)
530
+ attn_scores.append(attn_score)
531
+
532
+ # Calculate KV sizes
533
+ kv_size = (prefill_len * per_token_kv_size + (output_len - 1) * per_token_kv_size / 2) / 1e12
534
+ true_kv = (prefill_len * per_token_kv_size + output_len * per_token_kv_size) / 1e9
535
+
536
+ kvs.append(kv_size)
537
+ true_kvs.append(true_kv)
538
+
539
+ return {
540
+ 'kv_size': sum(kvs),
541
+ 'true_kv_size': sum(true_kvs) * 1e3,
542
+ 'attention_score': sum(attn_scores) / len(attn_scores)
543
+ }
544
+
545
+
546
+ def _calculate_attention_score(model_name, hf_config, prefill_len, output_len,
547
+ n_layers, n_attn_heads, d_head):
548
+ """Calculate attention score for a single output"""
549
+ if ("DeepSeek" in model_name and
550
+ hasattr(hf_config, "qk_rope_head_dim") and
551
+ hasattr(hf_config, "qk_nope_head_dim") and
552
+ hasattr(hf_config, "v_head_dim")):
553
+
554
+ q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
555
+ k_size = n_layers * n_attn_heads * q_head_dim
556
+ v_size = n_layers * n_attn_heads * hf_config.v_head_dim
557
+
558
+ score = (prefill_len * k_size + (output_len - 1) * k_size / 2 +
559
+ prefill_len * v_size + (output_len - 1) * v_size / 2)
560
+ else:
561
+ kv_size = n_layers * n_attn_heads * d_head
562
+ score = (prefill_len * kv_size + (output_len - 1) * kv_size / 2) * 2
563
+
564
+ return score / 1e12
565
+
566
+
567
+ def _calculate_throughput_metrics(batch_size, prefill_lengths, max_duration):
568
+ """Calculate throughput metrics"""
569
+ total_prefill = sum(prefill_lengths)
570
+ prefill_tp = total_prefill / (max_duration)
571
+ ttft = max_duration / batch_size
572
+ return ttft, prefill_tp
573
+
574
+
575
+ def _calculate_smbu_smfu(model_name, n_layers, attention_size_per_token, expert_config,
576
+ avg_activated_experts, metrics_data, hardware_specs, num_gpus,
577
+ precision, ttft, prefill_tp, batch_size, decoding_tp):
578
+ """Calculate S-MBU and S-MFU metrics"""
579
+ prefill_activation = avg_activated_experts[1]
580
+ decode_steps_activation = avg_activated_experts[2:]
581
+
582
+ # Calculate prefill metrics
583
+ prefill_smbu, prefill_smfu = _calculate_prefill_metrics(
584
+ model_name, n_layers, attention_size_per_token, expert_config,
585
+ prefill_activation, metrics_data['attention_score'], hardware_specs,
586
+ num_gpus, precision, ttft, prefill_tp
587
+ )
588
+
589
+ # Calculate decoding metrics
590
+ decoding_smbu, decoding_smfu = _calculate_decoding_metrics(
591
+ model_name, n_layers, attention_size_per_token, expert_config,
592
+ decode_steps_activation, metrics_data, hardware_specs,
593
+ num_gpus, precision, batch_size, decoding_tp
594
+ )
595
+
596
+ return {
597
+ 'prefill_smbu': prefill_smbu,
598
+ 'prefill_smfu': prefill_smfu,
599
+ 'decoding_smbu': decoding_smbu,
600
+ 'decoding_smfu': decoding_smfu
601
+ }
602
+
603
+
604
+ def _calculate_prefill_metrics(model_name, n_layers, attention_size_per_token, expert_config,
605
+ prefill_activation, attention_score, hardware_specs,
606
+ num_gpus, precision, ttft, prefill_tp):
607
+ """Calculate prefill S-MBU and S-MFU"""
608
+ model_calculators = {
609
+ 'Qwen': _calculate_qwen_prefill,
610
+ 'Qwen3': _calculate_qwen3_prefill,
611
+ 'DeepSeek': _calculate_deepseek_prefill
612
+ }
613
+
614
+ for model_type, calculator in model_calculators.items():
615
+ if model_type in model_name and (model_type != 'Qwen' or 'Qwen3' not in model_name):
616
+ return calculator(n_layers, attention_size_per_token, expert_config,
617
+ prefill_activation, attention_score, hardware_specs,
618
+ num_gpus, precision, ttft, prefill_tp)
619
+
620
+ # Default case
621
+ return _calculate_default_prefill(n_layers, attention_size_per_token, expert_config,
622
+ prefill_activation, attention_score, hardware_specs,
623
+ num_gpus, precision, ttft, prefill_tp)
624
+
625
+
626
+ def _calculate_decoding_metrics(model_name, n_layers, attention_size_per_token, expert_config,
627
+ decode_steps_activation, metrics_data, hardware_specs,
628
+ num_gpus, precision, batch_size, decoding_tp):
629
+ """Calculate decoding S-MBU and S-MFU"""
630
+ decoding_smbus = []
631
+
632
+ for activation in decode_steps_activation:
633
+ if "Qwen" in model_name and "Qwen3" not in model_name:
634
+ smbu, smfu = _calculate_qwen_decoding(n_layers, attention_size_per_token, expert_config,
635
+ activation, metrics_data, hardware_specs, num_gpus,
636
+ precision, batch_size, decoding_tp)
637
+ elif "Qwen3" in model_name:
638
+ smbu, smfu = _calculate_qwen3_decoding(n_layers, attention_size_per_token, expert_config,
639
+ activation, metrics_data, hardware_specs, num_gpus,
640
+ precision, batch_size, decoding_tp)
641
+ elif "DeepSeek" in model_name:
642
+ smbu, smfu = _calculate_deepseek_decoding(n_layers, attention_size_per_token, expert_config,
643
+ activation, metrics_data, hardware_specs, num_gpus,
644
+ precision, batch_size, decoding_tp)
645
+ else:
646
+ smbu, smfu = _calculate_default_decoding(n_layers, attention_size_per_token, expert_config,
647
+ activation, metrics_data, hardware_specs, num_gpus,
648
+ precision, batch_size, decoding_tp)
649
+ decoding_smbus.append(smbu)
650
+
651
+ return sum(decoding_smbus) / len(decoding_smbus), smfu
652
+
653
+
654
+ # Helper functions for specific model calculations
655
+ def _calculate_qwen_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation,
656
+ attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp):
657
+ smbu_numerator = (n_layers * (prefill_activation * expert_config['expert_size'] +
658
+ expert_config['shared_experts_size_total'] +
659
+ attention_size_per_token)) * precision / ttft
660
+ smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
661
+
662
+ smfu_numerator = (n_layers * (attention_size_per_token + expert_config['expert_size'] +
663
+ expert_config['shared_experts_size_total']) + attention_score) * 2 * prefill_tp
664
+ smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
665
+
666
+ return smbu, smfu
667
+
668
+
669
+ def _calculate_qwen3_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation,
670
+ attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp):
671
+ smbu_numerator = (n_layers * (prefill_activation * expert_config['expert_size'] +
672
+ attention_size_per_token)) * precision / ttft
673
+ smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
674
+
675
+ smfu_numerator = (n_layers * (attention_size_per_token + expert_config['expert_size']) +
676
+ attention_score) * 2 * prefill_tp
677
+ smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
678
+
679
+ return smbu, smfu
680
+
681
+
682
+ def _calculate_deepseek_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation,
683
+ attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp):
684
+ smbu_numerator = ((n_layers * attention_size_per_token +
685
+ expert_config['deepseek_sparse_layer_num'] *
686
+ (prefill_activation * expert_config['expert_size'] +
687
+ expert_config['shared_experts_size_total']) +
688
+ expert_config['deepseek_num_dense_layer'] *
689
+ expert_config['deepseek_dense_ffn_size']) * precision / ttft)
690
+ smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
691
+
692
+ smfu_numerator = ((n_layers * attention_size_per_token +
693
+ expert_config['deepseek_sparse_layer_num'] *
694
+ (expert_config['expert_size'] + expert_config['shared_experts_size_total']) +
695
+ expert_config['deepseek_num_dense_layer'] *
696
+ expert_config['deepseek_dense_ffn_size'] + attention_score) * 2 * prefill_tp)
697
+ smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
698
+
699
+ return smbu, smfu
700
+
701
+
702
+ def _calculate_default_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation,
703
+ attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp):
704
+ # Default implementation
705
+ smbu_numerator = (n_layers * (prefill_activation * expert_config['expert_size'] +
706
+ attention_size_per_token)) * precision / ttft
707
+ smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
708
+
709
+ smfu_numerator = (n_layers * (attention_size_per_token + expert_config['expert_size']) +
710
+ attention_score) * 2 * prefill_tp
711
+ smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
712
+
713
+ return smbu, smfu
714
+
715
+
716
+ def _calculate_qwen_decoding(n_layers, attention_size_per_token, expert_config, activation,
717
+ metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp):
718
+ smbu_numerator = ((n_layers * (activation * expert_config['expert_size'] +
719
+ expert_config['shared_experts_size_total'] +
720
+ attention_size_per_token) +
721
+ metrics_data['kv_size']) * precision / (batch_size / decoding_tp))
722
+ smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
723
+
724
+ smfu_numerator = ((n_layers * (attention_size_per_token + expert_config['expert_size'] +
725
+ expert_config['shared_experts_size_total']) +
726
+ metrics_data['attention_score']) * 2 * decoding_tp)
727
+ smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
728
+
729
+ return smbu, smfu
730
+
731
+
732
+ def _calculate_qwen3_decoding(n_layers, attention_size_per_token, expert_config, activation,
733
+ metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp):
734
+ smbu_numerator = ((n_layers * (activation * expert_config['expert_size'] +
735
+ attention_size_per_token) +
736
+ metrics_data['kv_size']) * precision / (batch_size / decoding_tp))
737
+ smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
738
+
739
+ smfu_numerator = ((n_layers * (attention_size_per_token + expert_config['expert_size']) +
740
+ metrics_data['attention_score']) * 2 * decoding_tp)
741
+ smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
742
+
743
+ return smbu, smfu
744
+
745
+
746
+ def _calculate_deepseek_decoding(n_layers, attention_size_per_token, expert_config, activation,
747
+ metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp):
748
+ smbu_numerator = ((n_layers * attention_size_per_token +
749
+ expert_config['deepseek_sparse_layer_num'] *
750
+ (activation * expert_config['expert_size'] +
751
+ expert_config['shared_experts_size_total']) +
752
+ expert_config['deepseek_num_dense_layer'] *
753
+ expert_config['deepseek_dense_ffn_size'] +
754
+ metrics_data['kv_size']) * precision / (batch_size / decoding_tp))
755
+ smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
756
+
757
+ smfu_numerator = ((n_layers * attention_size_per_token +
758
+ expert_config['deepseek_sparse_layer_num'] *
759
+ (expert_config['expert_size'] + expert_config['shared_experts_size_total']) +
760
+ expert_config['deepseek_num_dense_layer'] *
761
+ expert_config['deepseek_dense_ffn_size'] +
762
+ metrics_data['attention_score']) * 2 * decoding_tp)
763
+ smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
764
+
765
+ return smbu, smfu
766
+
767
+
768
+ def _calculate_default_decoding(n_layers, attention_size_per_token, expert_config, activation,
769
+ metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp):
770
+ smbu_numerator = ((n_layers * (activation * expert_config['expert_size'] +
771
+ attention_size_per_token) +
772
+ metrics_data['kv_size']) * precision / (batch_size / decoding_tp))
773
+ smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
774
+
775
+ smfu_numerator = ((n_layers * (attention_size_per_token + expert_config['expert_size']) +
776
+ metrics_data['attention_score']) * 2 * decoding_tp)
777
+ smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
778
+
779
+ return smbu, smfu
780
+
781
+ def _calculate_batch_metrics_hflm(output_len, context_prefill_size, decoding_tp, n_layers, d_model,
782
+ n_attn_heads, d_head, n_kv_heads, n_experts_per_tok, d_ff,
783
+ avg_activated_experts, hf_config, num_gpus, model_name,
784
+ used_dtype, batch_size, precision):
785
+ """Calculate metrics for a batch of outputs"""
786
+ gpu_type = get_gpu_details()
787
+ hardware_specs = {
788
+ "peak_bandwidth_tb": get_peak_bw(gpu_type) / 1e12,
789
+ "peak_flops_tf": get_peak_flops(gpu_type, precision=used_dtype) / 1e12,
790
+ }
791
+
792
+ # Calculate KV sizes
793
+ per_token_kv_size = 2 * n_layers * d_head * n_kv_heads # Default calculation
794
+
795
+ if "DeepSeek" in model_name:
796
+ if hasattr(hf_config, "kv_lora_rank") and hasattr(hf_config, "qk_rope_head_dim"):
797
+ per_token_kv_size = n_layers * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)
798
+
799
+
800
+ # Calculate attention scores
801
+ if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim"):
802
+ q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
803
+ origin_per_token_k_state_size = n_layers * n_attn_heads * q_head_dim
804
+ origin_per_token_v_state_size = n_layers * n_attn_heads * hf_config.v_head_dim
805
+ attention_score = context_prefill_size * origin_per_token_k_state_size + (output_len - 1) * origin_per_token_k_state_size / 2
806
+ attention_score += context_prefill_size * origin_per_token_v_state_size + (output_len - 1) * origin_per_token_v_state_size / 2
807
+ attention_score = attention_score / 1e12
808
  else:
809
+ origin_per_token_kv_states_size = n_layers * n_attn_heads * d_head
810
+ attention_score = context_prefill_size * origin_per_token_kv_states_size + (output_len - 1) * origin_per_token_kv_states_size / 2
811
+ attention_score = attention_score * 2 / 1e12
812
+
813
+ # Store attention scores and KV sizes
814
+ kv_size = context_prefill_size * per_token_kv_size + (output_len - 1) * per_token_kv_size / 2
815
+ kv_size = kv_size / 1e12
816
+ true_kv = (context_prefill_size * per_token_kv_size + output_len * per_token_kv_size) / 1e12 * 1e3
817
+
818
+ # Calculate aggregate values
819
+ kv_size = kv_size * batch_size
820
+ true_kv_size = true_kv * batch_size * 1e3
821
+ # Calculate attention size per token
822
+ if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim") and hasattr(hf_config, "kv_lora_rank"):
823
+ q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
824
+ if not hasattr(hf_config, "q_lora_rank") or not hf_config.q_lora_rank:
825
+ attention_size_per_token = (d_model * n_attn_heads * q_head_dim) + \
826
+ (d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \
827
+ (hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \
828
+ (hf_config.v_head_dim * n_attn_heads * d_model)
829
+ attention_size_per_token = attention_size_per_token / 1e12
830
+ else:
831
+ attention_size_per_token = (d_model * hf_config.q_lora_rank) + \
832
+ (hf_config.q_lora_rank * n_attn_heads * q_head_dim) + \
833
+ (d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \
834
+ (hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \
835
+ (hf_config.v_head_dim * n_attn_heads * d_model)
836
+ attention_size_per_token = attention_size_per_token / 1e12
837
+ else:
838
+ attention_size_per_token = d_model * (n_attn_heads * d_head + n_kv_heads * d_head * 2) + n_attn_heads * d_head * d_model
839
+ attention_size_per_token = attention_size_per_token / 1e12
840
+
841
+ # Calculate expert sizes
842
+ expert_size = d_ff * 3 * d_model / 1e12
843
+ shared_experts_size_total = 0
844
+ deepseek_dense_ffn_size = 0
845
+ deepseek_sparse_layer_num = 0
846
+
847
+ if "Qwen" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "shared_expert_intermediate_size"):
848
+ d_ff = hf_config.moe_intermediate_size
849
+ d_ff_share = hf_config.shared_expert_intermediate_size
850
+ shared_experts_size = d_ff_share * 3 * d_model
851
+ expert_size = d_ff * 3 * d_model
852
+ shared_experts_size_total = shared_experts_size / 1e12
853
+ expert_size = expert_size / 1e12
854
+ elif "Qwen3" in model_name and hasattr(hf_config, "moe_intermediate_size"):
855
+ d_ff = hf_config.moe_intermediate_size
856
+ expert_size = d_ff * 3 * d_model
857
+ expert_size = expert_size / 1e12
858
+ elif "DeepSeek" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "intermediate_size") and hasattr(hf_config, "first_k_dense_replace"):
859
+ d_ff = hf_config.moe_intermediate_size
860
+ d_ff_dense = hf_config.intermediate_size
861
+ deepseek_num_dense_layer = hf_config.first_k_dense_replace
862
+ shared_experts_size = d_ff * 3 * d_model
863
+ expert_size = d_ff * 3 * d_model
864
+ shared_experts = 2
865
+ shared_experts_size_total = shared_experts_size * shared_experts / 1e12
866
+ expert_size = expert_size / 1e12
867
+ deepseek_sparse_layer_num = n_layers - deepseek_num_dense_layer
868
+ deepseek_dense_ffn_size = d_ff_dense * 3 * d_model / 1e12
869
+
870
+ # Calculate S-MBU and S-MFU
871
+ if "Qwen" in model_name:
872
+ smbu = ((n_layers*(avg_activated_experts * expert_size + shared_experts_size_total + attention_size_per_token) +
873
+ kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
874
+ smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size + shared_experts_size_total) + attention_score) \
875
+ * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
876
+ elif "Qwen3" in model_name:
877
+ smbu = ((n_layers * (avg_activated_experts * expert_size + attention_size_per_token) +
878
+ kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
879
+ smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \
880
+ * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
881
+ elif "DeepSeek" in model_name:
882
+ smbu = ((n_layers * attention_size_per_token + deepseek_sparse_layer_num * \
883
+ (avg_activated_experts * expert_size + shared_experts_size_total) + \
884
+ deepseek_num_dense_layer * deepseek_dense_ffn_size + \
885
+ kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
886
+ smfu = (n_layers * attention_size_per_token + deepseek_sparse_layer_num * \
887
+ (n_experts_per_tok * expert_size + shared_experts_size_total) + \
888
+ deepseek_num_dense_layer * deepseek_dense_ffn_size + attention_score) \
889
+ * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
890
+ else:
891
+ smbu = ((n_layers*(avg_activated_experts * expert_size + attention_size_per_token) +
892
+ kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
893
+ smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \
894
+ * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
895
+
896
+ return {
897
+ 'smbu': smbu,
898
+ 'smfu': smfu,
899
+ 'kv_size': true_kv_size,
900
+ 'decoding_throughput': decoding_tp,
901
+ 'ttft': 0
902
+ }
903
+ class ModelInfoRetriever:
904
+ def __init__(self, model_name: str, precision: str = 'float16'):
905
+ if precision not in ['float32', 'float16', 'bfloat16', 'int8', 'int4', 'awq', 'gptq', 'fp8', 'fp4']:
906
+ raise ValueError("Precision must be one of ['float32', 'float16', 'bfloat16', 'int8', 'int4', 'awq', 'gptq', 'fp8', 'fp4']")
907
+ self.model_name = model_name
908
+ self.precision = precision
909
+ self.config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
910
+ self.model_type = self.config.model_type
911
+
912
+ def get_model_precision_bits(self):
913
+ """Returns bit width used by the given quantization format."""
914
+ if self.precision == 'float32':
915
+ return 4
916
+ if self.precision in ['float16', 'bfloat16']:
917
+ return 2
918
+ if self.precision in ['int8', 'fp8']:
919
+ return 1
920
+ if self.precision in ['int4', 'fp4', 'gptq', 'awq']:
921
+ return 0.5
922
+ raise ValueError(f"Unsupported precision: {self.precision}")
923
+
924
+ def get_attention_info(self):
925
+ """Returns attention-related info"""
926
+ return {
927
+ 'num_attention_heads': getattr(self.config, "num_attention_heads", None),
928
+ 'num_key_value_heads': getattr(self.config, "num_key_value_heads", getattr(self.config, "num_kv_heads", None)),
929
+ 'head_dim': getattr(self.config, "head_dim", getattr(self.config, "hidden_size", None) // getattr(self.config, "num_attention_heads", 1))
930
+ }
931
+
932
+ def get_rope_info(self):
933
+ """Returns RoPE (rotary embedding) info if available"""
934
+ if hasattr(self.config, "rope_scaling"):
935
+ return {
936
+ "type": self.config.rope_scaling.get("type"),
937
+ "factor": self.config.rope_scaling.get("factor")
938
+ }
939
+ elif hasattr(self.config, "use_alibi"):
940
+ return {"type": "alibi", "enabled": self.config.use_alibi}
941
+ else:
942
+ return {"type": "none"}
943
+
944
+ def get_moe_info(self, d_model=None):
945
+ """Returns MoE configuration such as number of experts and FFN dim"""
946
+ if d_model is None:
947
+ d_model = getattr(self.config, "hidden_size", None)
948
+
949
+ num_experts = (
950
+ getattr(self.config, "num_local_experts", None) or
951
+ getattr(self.config, "num_experts", None) or
952
+ getattr(self.config, "n_routed_experts", None) or
953
+ getattr(getattr(self.config, "ffn_config", {}), "moe_num_experts", None) or
954
+ 1
955
+ )
956
+ n_experts_per_tok = (
957
+ getattr(self.config, "num_experts_per_tok", None) or
958
+ getattr(self.config, "num_selected_experts", None) or
959
+ getattr(getattr(self.config, "ffn_config", {}), "moe_top_k", None) or
960
+ 1
961
+ )
962
+ d_ff = (
963
+ getattr(self.config, "ffn_dim", None) or
964
+ getattr(self.config, "intermediate_size", None) or
965
+ getattr(self.config, "d_ff", None) or
966
+ (d_model * getattr(self.config, "ff_ratio", 4)) or
967
+ getattr(getattr(self.config, "ffn_config", {}), "ffn_hidden_size", None) or
968
+ (4 * d_model)
969
+ )
970
+
971
+ return {
972
+ "num_experts": num_experts,
973
+ "experts_per_token": n_experts_per_tok,
974
+ "ffn_dim": d_ff
975
+ }
976
+
977
+ def get_architecture_info(self):
978
+ """Returns model-wide architecture info"""
979
+ return {
980
+ "model_type": self.model_type,
981
+ "hidden_size": getattr(self.config, "hidden_size", None),
982
+ "num_hidden_layers": getattr(self.config, "num_hidden_layers", None),
983
+ "max_position_embeddings": getattr(self.config, "max_position_embeddings", None),
984
+ "vocab_size": getattr(self.config, "vocab_size", None),
985
+ "architectures": getattr(self.config, "architectures", []),
986
+ }
987
+
988
+ def summarize(self):
989
+ """Aggregate all extracted info in a dictionary"""
990
+ d_model = getattr(self.config, "hidden_size", None)
991
+ return {
992
+ "model_name": self.model_name,
993
+ "model_type": self.model_type,
994
+ "precision_bits": self.get_model_precision_bits(),
995
+ "architecture": self.get_architecture_info(),
996
+ "attention": self.get_attention_info(),
997
+ "rope": self.get_rope_info(),
998
+ "moe": self.get_moe_info(d_model)
999
+ }
1000
+
1001
+
1002
 
1003
+ # if __name__ == "__main__":
1004
+ # print(analyze_gpu_stats(parse_nvidia_smi()))
1005
+ # print(get_gpu_details())