Spaces:
Runtime error
Runtime error
future-xy
commited on
Commit
·
1c22d8d
1
Parent(s):
7c45643
support selecting inference framework
Browse files- app.py +25 -7
- src/backend/manage_requests.py +1 -0
- src/backend/run_eval_suite.py +3 -2
- src/display/utils.py +21 -0
- src/leaderboard/read_evals.py +6 -0
- src/populate.py +4 -0
app.py
CHANGED
|
@@ -33,6 +33,7 @@ from src.display.utils import (
|
|
| 33 |
TYPES,
|
| 34 |
AutoEvalColumn,
|
| 35 |
ModelType,
|
|
|
|
| 36 |
fields,
|
| 37 |
WeightType,
|
| 38 |
Precision,
|
|
@@ -183,6 +184,14 @@ with demo:
|
|
| 183 |
)
|
| 184 |
|
| 185 |
with gr.Column(min_width=320):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
filter_columns_type = gr.CheckboxGroup(
|
| 187 |
label="Model types",
|
| 188 |
choices=[t.to_str() for t in ModelType],
|
|
@@ -199,13 +208,13 @@ with demo:
|
|
| 199 |
elem_id="filter-columns-precision",
|
| 200 |
)
|
| 201 |
|
| 202 |
-
filter_columns_size = gr.CheckboxGroup(
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
)
|
| 209 |
|
| 210 |
# breakpoint()
|
| 211 |
|
|
@@ -308,6 +317,15 @@ with demo:
|
|
| 308 |
with gr.Row():
|
| 309 |
gr.Markdown("# Submit your model here", elem_classes="markdown-text")
|
| 310 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
with gr.Row():
|
| 312 |
with gr.Column():
|
| 313 |
model_name_textbox = gr.Textbox(label="Model name")
|
|
|
|
| 33 |
TYPES,
|
| 34 |
AutoEvalColumn,
|
| 35 |
ModelType,
|
| 36 |
+
InferenceFramework,
|
| 37 |
fields,
|
| 38 |
WeightType,
|
| 39 |
Precision,
|
|
|
|
| 184 |
)
|
| 185 |
|
| 186 |
with gr.Column(min_width=320):
|
| 187 |
+
filter_columns_size = gr.CheckboxGroup(
|
| 188 |
+
label="Inference frameworks",
|
| 189 |
+
choices=[t.to_str() for t in InferenceFramework],
|
| 190 |
+
value=[t.to_str() for t in InferenceFramework],
|
| 191 |
+
interactive=True,
|
| 192 |
+
elem_id="filter-columns-size",
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
filter_columns_type = gr.CheckboxGroup(
|
| 196 |
label="Model types",
|
| 197 |
choices=[t.to_str() for t in ModelType],
|
|
|
|
| 208 |
elem_id="filter-columns-precision",
|
| 209 |
)
|
| 210 |
|
| 211 |
+
# filter_columns_size = gr.CheckboxGroup(
|
| 212 |
+
# label="Model sizes (in billions of parameters)",
|
| 213 |
+
# choices=list(NUMERIC_INTERVALS.keys()),
|
| 214 |
+
# value=list(NUMERIC_INTERVALS.keys()),
|
| 215 |
+
# interactive=True,
|
| 216 |
+
# elem_id="filter-columns-size",
|
| 217 |
+
# )
|
| 218 |
|
| 219 |
# breakpoint()
|
| 220 |
|
|
|
|
| 317 |
with gr.Row():
|
| 318 |
gr.Markdown("# Submit your model here", elem_classes="markdown-text")
|
| 319 |
|
| 320 |
+
with gr.Row():
|
| 321 |
+
inference_framework = gr.Dropdown(
|
| 322 |
+
choices=[t.to_str() for t in InferenceFramework],
|
| 323 |
+
label="Inference framework",
|
| 324 |
+
multiselect=False,
|
| 325 |
+
value=None,
|
| 326 |
+
interactive=True,
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
with gr.Row():
|
| 330 |
with gr.Column():
|
| 331 |
model_name_textbox = gr.Textbox(label="Model name")
|
src/backend/manage_requests.py
CHANGED
|
@@ -16,6 +16,7 @@ class EvalRequest:
|
|
| 16 |
json_filepath: str
|
| 17 |
weight_type: str = "Original"
|
| 18 |
model_type: str = "" # pretrained, finetuned, with RL
|
|
|
|
| 19 |
precision: str = "" # float16, bfloat16
|
| 20 |
base_model: Optional[str] = None # for adapter models
|
| 21 |
revision: str = "main" # commit
|
|
|
|
| 16 |
json_filepath: str
|
| 17 |
weight_type: str = "Original"
|
| 18 |
model_type: str = "" # pretrained, finetuned, with RL
|
| 19 |
+
inference_framework: str = "HF-Chat"
|
| 20 |
precision: str = "" # float16, bfloat16
|
| 21 |
base_model: Optional[str] = None # for adapter models
|
| 22 |
revision: str = "main" # commit
|
src/backend/run_eval_suite.py
CHANGED
|
@@ -42,13 +42,13 @@ def run_evaluation(
|
|
| 42 |
# task_names = utils.pattern_match(task_names, tasks.ALL_TASKS)
|
| 43 |
|
| 44 |
print(f"Selected Tasks: {task_names}")
|
| 45 |
-
print(f"Eval Request: {eval_request
|
| 46 |
print(
|
| 47 |
f"Num Fewshot: {num_fewshot}, Batch Size: {batch_size}, Device: {device}, Use Cache: {use_cache}, Limit: {limit}"
|
| 48 |
)
|
| 49 |
# hf-chat is implemented to use apply_chat_template
|
| 50 |
results = evaluator.simple_evaluate(
|
| 51 |
-
model=
|
| 52 |
model_args=eval_request.get_model_args(),
|
| 53 |
tasks=task_names,
|
| 54 |
num_fewshot=num_fewshot,
|
|
@@ -65,6 +65,7 @@ def run_evaluation(
|
|
| 65 |
results["config"]["model_dtype"] = eval_request.precision
|
| 66 |
results["config"]["model_name"] = eval_request.model
|
| 67 |
results["config"]["model_sha"] = eval_request.revision
|
|
|
|
| 68 |
|
| 69 |
if max_nb_samples is not None:
|
| 70 |
if "samples" in results:
|
|
|
|
| 42 |
# task_names = utils.pattern_match(task_names, tasks.ALL_TASKS)
|
| 43 |
|
| 44 |
print(f"Selected Tasks: {task_names}")
|
| 45 |
+
print(f"Eval Request: {eval_request}")
|
| 46 |
print(
|
| 47 |
f"Num Fewshot: {num_fewshot}, Batch Size: {batch_size}, Device: {device}, Use Cache: {use_cache}, Limit: {limit}"
|
| 48 |
)
|
| 49 |
# hf-chat is implemented to use apply_chat_template
|
| 50 |
results = evaluator.simple_evaluate(
|
| 51 |
+
model=eval_request.inference_framework, # "hf-causal-experimental", # "hf-causal", hf-chat
|
| 52 |
model_args=eval_request.get_model_args(),
|
| 53 |
tasks=task_names,
|
| 54 |
num_fewshot=num_fewshot,
|
|
|
|
| 65 |
results["config"]["model_dtype"] = eval_request.precision
|
| 66 |
results["config"]["model_name"] = eval_request.model
|
| 67 |
results["config"]["model_sha"] = eval_request.revision
|
| 68 |
+
results["config"]["inference_framework"] = eval_request.inference_framework
|
| 69 |
|
| 70 |
if max_nb_samples is not None:
|
| 71 |
if "samples" in results:
|
src/display/utils.py
CHANGED
|
@@ -70,6 +70,9 @@ auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "ma
|
|
| 70 |
# #Scores
|
| 71 |
# # auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Avg", "number", True)])
|
| 72 |
|
|
|
|
|
|
|
|
|
|
| 73 |
for task in Tasks:
|
| 74 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
| 75 |
|
|
@@ -129,6 +132,24 @@ class ModelType(Enum):
|
|
| 129 |
return ModelType.Unknown
|
| 130 |
|
| 131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
class WeightType(Enum):
|
| 133 |
Adapter = ModelDetails("Adapter")
|
| 134 |
Original = ModelDetails("Original")
|
|
|
|
| 70 |
# #Scores
|
| 71 |
# # auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Avg", "number", True)])
|
| 72 |
|
| 73 |
+
# Inference framework
|
| 74 |
+
auto_eval_column_dict.append(["inference_framework", ColumnContent, ColumnContent("Inference framework", "str", True)])
|
| 75 |
+
|
| 76 |
for task in Tasks:
|
| 77 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
| 78 |
|
|
|
|
| 132 |
return ModelType.Unknown
|
| 133 |
|
| 134 |
|
| 135 |
+
class InferenceFramework(Enum):
|
| 136 |
+
# "moe-infinity", hf-chat
|
| 137 |
+
MoE_Infinity = ModelDetails("MoE-Infinity")
|
| 138 |
+
HF_Chat = ModelDetails("HF-Chat")
|
| 139 |
+
Unknown = ModelDetails("?")
|
| 140 |
+
|
| 141 |
+
def to_str(self):
|
| 142 |
+
return self.value.name
|
| 143 |
+
|
| 144 |
+
@staticmethod
|
| 145 |
+
def from_str(inference_framework: str):
|
| 146 |
+
if inference_framework in ["moe-infinity"]:
|
| 147 |
+
return InferenceFramework.MoE_Infinity
|
| 148 |
+
if inference_framework in ["hf-chat"]:
|
| 149 |
+
return InferenceFramework.HF_Chat
|
| 150 |
+
return InferenceFramework.Unknown
|
| 151 |
+
|
| 152 |
+
|
| 153 |
class WeightType(Enum):
|
| 154 |
Adapter = ModelDetails("Adapter")
|
| 155 |
Original = ModelDetails("Original")
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -41,6 +41,7 @@ class EvalResult:
|
|
| 41 |
num_params: int = 0
|
| 42 |
date: str = "" # submission date of request file
|
| 43 |
still_on_hub: bool = False
|
|
|
|
| 44 |
|
| 45 |
@staticmethod
|
| 46 |
def init_from_json_file(json_filepath, is_backend: bool = False):
|
|
@@ -48,6 +49,8 @@ class EvalResult:
|
|
| 48 |
with open(json_filepath) as fp:
|
| 49 |
data = json.load(fp)
|
| 50 |
|
|
|
|
|
|
|
| 51 |
# We manage the legacy config format
|
| 52 |
config = data.get("config", data.get("config_general", None))
|
| 53 |
|
|
@@ -118,6 +121,7 @@ class EvalResult:
|
|
| 118 |
revision=config.get("model_sha", ""),
|
| 119 |
still_on_hub=still_on_hub,
|
| 120 |
architecture=architecture,
|
|
|
|
| 121 |
)
|
| 122 |
|
| 123 |
return res
|
|
@@ -136,6 +140,7 @@ class EvalResult:
|
|
| 136 |
self.likes = request.get("likes", 0)
|
| 137 |
self.num_params = request.get("params", 0)
|
| 138 |
self.date = request.get("submitted_time", "")
|
|
|
|
| 139 |
except Exception as e:
|
| 140 |
print(f"Could not find request file for {self.org}/{self.model} -- path: {requests_path} -- {e}")
|
| 141 |
|
|
@@ -166,6 +171,7 @@ class EvalResult:
|
|
| 166 |
AutoEvalColumn.likes.name: self.likes,
|
| 167 |
AutoEvalColumn.params.name: self.num_params,
|
| 168 |
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
|
|
|
| 169 |
}
|
| 170 |
|
| 171 |
for task in Tasks:
|
|
|
|
| 41 |
num_params: int = 0
|
| 42 |
date: str = "" # submission date of request file
|
| 43 |
still_on_hub: bool = False
|
| 44 |
+
inference_framework: str = "Unknown"
|
| 45 |
|
| 46 |
@staticmethod
|
| 47 |
def init_from_json_file(json_filepath, is_backend: bool = False):
|
|
|
|
| 49 |
with open(json_filepath) as fp:
|
| 50 |
data = json.load(fp)
|
| 51 |
|
| 52 |
+
inference_framework = data.get("inference_framework", "Unknown")
|
| 53 |
+
|
| 54 |
# We manage the legacy config format
|
| 55 |
config = data.get("config", data.get("config_general", None))
|
| 56 |
|
|
|
|
| 121 |
revision=config.get("model_sha", ""),
|
| 122 |
still_on_hub=still_on_hub,
|
| 123 |
architecture=architecture,
|
| 124 |
+
inference_framework=inference_framework,
|
| 125 |
)
|
| 126 |
|
| 127 |
return res
|
|
|
|
| 140 |
self.likes = request.get("likes", 0)
|
| 141 |
self.num_params = request.get("params", 0)
|
| 142 |
self.date = request.get("submitted_time", "")
|
| 143 |
+
self.inference_framework = request.get("inference_framework", "Unknown")
|
| 144 |
except Exception as e:
|
| 145 |
print(f"Could not find request file for {self.org}/{self.model} -- path: {requests_path} -- {e}")
|
| 146 |
|
|
|
|
| 171 |
AutoEvalColumn.likes.name: self.likes,
|
| 172 |
AutoEvalColumn.params.name: self.num_params,
|
| 173 |
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
| 174 |
+
AutoEvalColumn.inference_framework.name: self.inference_framework,
|
| 175 |
}
|
| 176 |
|
| 177 |
for task in Tasks:
|
src/populate.py
CHANGED
|
@@ -3,6 +3,7 @@ import os
|
|
| 3 |
from tqdm import tqdm
|
| 4 |
import copy
|
| 5 |
import pandas as pd
|
|
|
|
| 6 |
|
| 7 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
| 8 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
|
@@ -63,6 +64,9 @@ def get_leaderboard_df(
|
|
| 63 |
|
| 64 |
# if AutoEvalColumn.average.name in df:
|
| 65 |
# df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
if not df.empty:
|
| 68 |
df = df[cols].round(decimals=2)
|
|
|
|
| 3 |
from tqdm import tqdm
|
| 4 |
import copy
|
| 5 |
import pandas as pd
|
| 6 |
+
import numpy as np
|
| 7 |
|
| 8 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
| 9 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
|
|
|
| 64 |
|
| 65 |
# if AutoEvalColumn.average.name in df:
|
| 66 |
# df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 67 |
+
for col in cols:
|
| 68 |
+
if col not in df.columns:
|
| 69 |
+
df[col] = np.nan
|
| 70 |
|
| 71 |
if not df.empty:
|
| 72 |
df = df[cols].round(decimals=2)
|