arthurbresnu HF Staff commited on
Commit
96f7b00
·
verified ·
1 Parent(s): 4f75e8b
Files changed (5) hide show
  1. .gitattributes +1 -0
  2. README.md +97 -4
  3. push-to-hub.png +3 -0
  4. sbert-hf.png +3 -0
  5. sbertLogo.png +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,10 +1,103 @@
1
  ---
2
  title: README
3
- emoji: 🏃
4
- colorFrom: indigo
5
- colorTo: pink
6
  sdk: static
7
  pinned: false
8
  ---
 
9
 
10
- Edit this `README.md` markdown file to author your organization card.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: README
3
+ emoji: ❤️
4
+ colorFrom: red
5
+ colorTo: red
6
  sdk: static
7
  pinned: false
8
  ---
9
+ SentenceTransformers 🤗 is a Python framework for state-of-the-art sentence, text and image embeddings.
10
 
11
+ Install the [Sentence Transformers](https://www.sbert.net/) library.
12
+ ```
13
+ pip install -U sentence-transformers
14
+ ```
15
+
16
+ The usage is as simple as:
17
+ ```python
18
+ from sentence_transformers import SparseEncoder
19
+
20
+ # 1. Load a pretrained SparseEncoder model
21
+ model = SparseEncoder("naver/splade-cocondenser-ensembledistil")
22
+
23
+ # The sentences to encode
24
+ sentences = [
25
+ "The weather is lovely today.",
26
+ "It's so sunny outside!",
27
+ "He drove to the stadium.",
28
+ ]
29
+
30
+ # 2. Calculate sparse embeddings by calling model.encode()
31
+ embeddings = model.encode(sentences)
32
+ print(embeddings.shape)
33
+ # [3, 30522] - sparse representation with vocabulary size dimensions
34
+
35
+ # 3. Calculate the embedding similarities
36
+ similarities = model.similarity(embeddings, embeddings)
37
+ print(similarities)
38
+ # tensor([[ 35.629, 9.154, 0.098],
39
+ # [ 9.154, 27.478, 0.019],
40
+ # [ 0.098, 0.019, 29.553]])
41
+
42
+ # 4. Check sparsity stats
43
+ stats = SparseEncoder.sparsity(embeddings)
44
+ print(f"Sparsity: {stats['sparsity_ratio']:.2%}")
45
+ # Sparsity: 99.84%
46
+ ```
47
+
48
+ Hugging Face makes it easy to collaboratively build and showcase your [Sentence Transformers](https://www.sbert.net/) models! You can collaborate with your organization, upload and showcase your own models in your profile ❤️
49
+
50
+ <div class="grid lg:grid-cols-3 gap-x-4 gap-y-7">
51
+ <a href="https://www.sbert.net/" class="block overflow-hidden group">
52
+ <div
53
+ class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center bg-[#FA8072]"
54
+ >
55
+ <img alt="" src="https://huggingface.co/spaces/sparse-encoder/README/resolve/main/sbertLogo.png" class="w-40" />
56
+ </div>
57
+ <div class="underline">Documentation</div>
58
+ </a>
59
+ <a
60
+ href="https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer.push_to_hub"
61
+ class="block overflow-hidden group"
62
+ >
63
+ <div
64
+ class="w-full h-40 mb-2 bg-gray-900 group-hover:bg-gray-850 rounded-lg flex items-start justify-start overflow-hidden"
65
+ >
66
+ <img
67
+ alt=""
68
+ src="https://huggingface.co/spaces/sparse-encoder/README/resolve/main/push-to-hub.png"
69
+ class="w-full h-40 object-cover overflow-hidden"
70
+ />
71
+ </div>
72
+ <div class="underline">Push your Sentence Transformers models to the Hub ❤️ </div>
73
+ </a>
74
+ <a
75
+ href="https://huggingface.co/models?library=sentence-transformers&other=sparse&sort=downloads"
76
+ class="block overflow-hidden group"
77
+ >
78
+ <div
79
+ class="w-full h-40 mb-2 bg-gray-900 group-hover:bg-gray-850 rounded-lg flex items-start justify-start overflow-hidden"
80
+ >
81
+ <img
82
+ alt=""
83
+ src="https://huggingface.co/spaces/sparse-encoder/README/resolve/main/sbert-hf.png"
84
+ class="w-full h-40 object-cover overflow-hidden"
85
+ />
86
+ </div>
87
+ <div class="underline">Find all SparseEncoder models on the 🤗 Hub</div>
88
+ </a>
89
+ </div>
90
+
91
+ To upload your SparseEncoder models to the Hugging Face Hub, log in with `huggingface-cli login` and use the [`push_to_hub`](https://sbert.net/docs/package_reference/sparse_encoder/SparseEncoder.html#sentence_transformers.sparse_encoder.SparseEncoder.push_to_hub) method within the Sentence Transformers library.
92
+ ```python
93
+ from sentence_transformers import SparseEncoder
94
+
95
+ # Load or train a model
96
+ model = SparseEncoder(...)
97
+ # Push to Hub
98
+ model.push_to_hub("my_new_model")
99
+ ```
100
+
101
+ Note that this repository hosts for now only examples of sparse-encoder models from the SentenceTransformers package that can be easily reproduced with the different training script examples.
102
+
103
+ More details at [Sparse Encoder > Training Examples](https://sbert.net/docs/sparse_encoder/training/examples.html) for the examples scripts and [Sparse Encoder > Pretrained Models](https://sbert.net/docs/sparse_encoder/pretrained_models.html) for the community pre-trained models, that you can also found for some of them in the following collections.
push-to-hub.png ADDED

Git LFS Details

  • SHA256: f60e0aa0bd611843b7a813b8818614096ff477279a909cc5474a661a729697ac
  • Pointer size: 131 Bytes
  • Size of remote file: 143 kB
sbert-hf.png ADDED

Git LFS Details

  • SHA256: 43ba049e9ab82d850fbe0a6428c7a875d4a8fb85a7f140ca31baa75480592fcb
  • Pointer size: 131 Bytes
  • Size of remote file: 129 kB
sbertLogo.png ADDED

Git LFS Details

  • SHA256: 3e5aeb6d2f49680e814601f4f76a0f3475cb5efb185544e44ea18e8c0cf35824
  • Pointer size: 130 Bytes
  • Size of remote file: 89.6 kB