import streamlit as st # Page configuration st.set_page_config( layout="wide", initial_sidebar_state="auto" ) # Custom CSS for better styling st.markdown(""" """, unsafe_allow_html=True) # Title st.markdown('
Introduction to XLM-RoBERTa Annotators in Spark NLP
', unsafe_allow_html=True) # Subtitle st.markdown("""

XLM-RoBERTa (Cross-lingual Robustly Optimized BERT Approach) is an advanced multilingual model that extends the capabilities of RoBERTa to over 100 languages. Pre-trained on a massive, diverse corpus, XLM-RoBERTa is designed to handle various NLP tasks in a multilingual context, making it ideal for applications that require cross-lingual understanding. Below, we provide an overview of the XLM-RoBERTa annotators for these tasks:

""", unsafe_allow_html=True) # XLM-RoBERTa for Question Answering st.markdown("""
Question Answering with XLM-RoBERTa
""", unsafe_allow_html=True) st.markdown("""

Question answering (QA) is a crucial task in Natural Language Processing (NLP) where the goal is to extract an answer from a given context in response to a specific question.

XLM-RoBERTa excels in question answering tasks across multiple languages, making it an invaluable tool for global applications. Below is an example of how to implement question answering using XLM-RoBERTa in Spark NLP.

Using XLM-RoBERTa for Question Answering enables:

Advantages of using XLM-RoBERTa for Question Answering in Spark NLP include:

""", unsafe_allow_html=True) st.markdown("""
How to Use XLM-RoBERTa for Question Answering in Spark NLP
""", unsafe_allow_html=True) st.markdown("""

To leverage XLM-RoBERTa for question answering, Spark NLP provides a user-friendly pipeline setup. The following example shows how to use XLM-RoBERTa for extracting answers from a given context based on a specific question. XLM-RoBERTa’s multilingual training enables it to perform question answering across various languages, making it an essential tool for global NLP tasks.

""", unsafe_allow_html=True) # Code Example st.code(''' from sparknlp.base import * from sparknlp.annotator import * from pyspark.ml import Pipeline document_assembler = MultiDocumentAssembler() \\ .setInputCols(["question", "context"]) \\ .setOutputCols(["document_question", "document_context"]) spanClassifier = XlmRoBertaForQuestionAnswering.pretrained("xlm_roberta_qa_Part_1_XLM_Model_E1","en") \\ .setInputCols(["document_question", "document_context"]) \\ .setOutputCol("answer") \\ .setCaseSensitive(True) pipeline = Pipeline().setStages([document_assembler, spanClassifier]) example = spark.createDataFrame([["What's my name?", "My name is Clara and I live in Berkeley."]]).toDF("question", "context") result = pipeline.fit(example).transform(example) result.select("answer.result").show(truncate=False) ''', language='python') st.text(""" +-----------+ | result | +-----------+ |[Clara] | +-----------+ """) # Model Info Section st.markdown('
Choosing the Right Model
', unsafe_allow_html=True) st.markdown("""

The XLM-RoBERTa model used here is pretrained and fine-tuned for question answering tasks, providing high accuracy and multilingual support.

For more information about the model, visit the XLM-RoBERTa Model Hub.

""", unsafe_allow_html=True) # References Section st.markdown('
References
', unsafe_allow_html=True) st.markdown("""
""", unsafe_allow_html=True) # Footer st.markdown("""
""", unsafe_allow_html=True) st.markdown('
Quick Links
', unsafe_allow_html=True) st.markdown("""
""", unsafe_allow_html=True)