|
import streamlit as st
|
|
import sparknlp
|
|
|
|
from sparknlp.base import *
|
|
from sparknlp.annotator import *
|
|
from pyspark.ml import Pipeline
|
|
|
|
|
|
st.set_page_config(
|
|
layout="wide",
|
|
initial_sidebar_state="auto"
|
|
)
|
|
|
|
|
|
st.markdown("""
|
|
<style>
|
|
.main-title {
|
|
font-size: 36px;
|
|
color: #4A90E2;
|
|
font-weight: bold;
|
|
text-align: center;
|
|
}
|
|
.section {
|
|
background-color: #f9f9f9;
|
|
padding: 10px;
|
|
border-radius: 10px;
|
|
margin-top: 10px;
|
|
}
|
|
.section p, .section ul {
|
|
color: #666666;
|
|
}
|
|
</style>
|
|
""", unsafe_allow_html=True)
|
|
|
|
@st.cache_resource
|
|
def init_spark():
|
|
return sparknlp.start()
|
|
|
|
@st.cache_resource
|
|
def create_pipeline(model):
|
|
documentAssembler = DocumentAssembler() \
|
|
.setInputCol("text") \
|
|
.setOutputCol("documents")
|
|
|
|
t5 = T5Transformer.pretrained(model) \
|
|
.setTask("translate English to SQL:") \
|
|
.setInputCols(["documents"]) \
|
|
.setMaxOutputLength(200) \
|
|
.setOutputCol("sql")
|
|
|
|
pipeline = Pipeline().setStages([documentAssembler, t5])
|
|
return pipeline
|
|
|
|
def fit_data(pipeline, data):
|
|
df = spark.createDataFrame([[data]]).toDF("text")
|
|
result = pipeline.fit(df).transform(df)
|
|
return result.select('sql.result').collect()
|
|
|
|
|
|
model = st.sidebar.selectbox(
|
|
"Choose the pretrained model",
|
|
["t5_small_wikiSQL"],
|
|
help="For more info about the models visit: https://sparknlp.org/models"
|
|
)
|
|
|
|
|
|
title, sub_title = (
|
|
'SQL Query Generation',
|
|
'This demo shows how to generate SQL code from natural language text.'
|
|
)
|
|
|
|
st.markdown(f'<div class="main-title">{title}</div>', unsafe_allow_html=True)
|
|
st.write(sub_title)
|
|
|
|
|
|
link = """
|
|
<a href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/T5_SQL.ipynb">
|
|
<img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>
|
|
</a>
|
|
"""
|
|
st.sidebar.markdown('Reference notebook:')
|
|
st.sidebar.markdown(link, unsafe_allow_html=True)
|
|
|
|
|
|
examples = [
|
|
"How many customers have ordered more than 2 items?",
|
|
"How many players were with the school or club team La Salle?",
|
|
"When the scoring rank was 117, what was the best finish?",
|
|
"When the best finish was T69, how many people came in 2nd?",
|
|
"How many wins were there when the money list rank was 183?",
|
|
"When did the Metrostars have their first Rookie of the Year winner?",
|
|
"What college did the Rookie of the Year from the Columbus Crew attend?"
|
|
]
|
|
|
|
selected_text = st.selectbox("Select an example", examples)
|
|
custom_input = st.text_input("Try it with your own Sentence!")
|
|
|
|
text_to_analyze = custom_input if custom_input else selected_text
|
|
|
|
st.write('Text to be converted to SQL query:')
|
|
HTML_WRAPPER = """<div class="scroll entities" style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem; white-space:pre-wrap">{}</div>"""
|
|
st.markdown(HTML_WRAPPER.format(text_to_analyze), unsafe_allow_html=True)
|
|
|
|
|
|
spark = init_spark()
|
|
pipeline = create_pipeline(model)
|
|
output = fit_data(pipeline, text_to_analyze)
|
|
|
|
|
|
st.write("Generated Output:")
|
|
|
|
output_text = "".join(output[0][0])
|
|
st.markdown(f'<div class="section-content">{output_text}</div>', unsafe_allow_html=True) |