File size: 8,042 Bytes
1c03780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import streamlit as st

# Custom CSS for better styling
st.markdown("""

    <style>

        .main-title {

            font-size: 36px;

            color: #4A90E2;

            font-weight: bold;

            text-align: center;

        }

        .sub-title {

            font-size: 24px;

            color: #4A90E2;

            margin-top: 20px;

        }

        .section {

            background-color: #f9f9f9;

            padding: 15px;

            border-radius: 10px;

            margin-top: 20px;

        }

        .section h2 {

            font-size: 22px;

            color: #4A90E2;

        }

        .section p, .section ul {

            color: #666666;

        }

        .link {

            color: #4A90E2;

            text-decoration: none;

        }

    </style>

""", unsafe_allow_html=True)

# Title
st.markdown('<div class="main-title">Correct Sentences Grammar</div>', unsafe_allow_html=True)

# Introduction Section
st.markdown("""

<div class="section">

    <p>Ensuring correct grammar in sentences is essential for clear and effective communication. Whether writing an email, an academic paper, or a casual message, proper grammar ensures that your message is understood as intended.</p>

    <p>This page demonstrates how to implement a grammar correction pipeline using advanced NLP models. We utilize the T5 Transformer model, fine-tuned for grammar error correction, to automatically correct sentences and enhance their grammatical accuracy.</p>

</div>

""", unsafe_allow_html=True)

# T5 Transformer Overview
st.markdown('<div class="sub-title">Understanding the T5 Transformer for Grammar Correction</div>', unsafe_allow_html=True)

st.markdown("""

<div class="section">

    <p>The T5 (Text-To-Text Transfer Transformer) model, developed by Google, is a versatile tool for various NLP tasks, including grammar correction. By processing input sentences and applying the appropriate grammar corrections, T5 generates outputs that maintain the original meaning while correcting errors.</p>

    <p>This is particularly useful for applications in writing assistance, automated editing, and educational tools, where grammatical accuracy is crucial.</p>

</div>

""", unsafe_allow_html=True)

# Performance Section
st.markdown('<div class="sub-title">Performance and Use Cases</div>', unsafe_allow_html=True)

st.markdown("""

<div class="section">

    <p>The T5 model has shown strong performance in grammar correction tasks. It consistently produces accurate and contextually appropriate corrections, making it a valuable tool for improving written communication across various settings.</p>

    <p>This capability is beneficial for students, professionals, and anyone who needs to ensure their writing is grammatically correct. The T5 model’s efficiency in correcting errors makes it a powerful asset for enhancing the quality of written content.</p>

</div>

""", unsafe_allow_html=True)

# Implementation Section
st.markdown('<div class="sub-title">Implementing Grammar Correction</div>', unsafe_allow_html=True)

st.markdown("""

<div class="section">

    <p>The following example demonstrates how to implement a grammar correction pipeline using Spark NLP. The pipeline includes a document assembler and the T5 model for performing grammar corrections.</p>

</div>

""", unsafe_allow_html=True)

st.code('''

import sparknlp 

from sparknlp.base import *

from sparknlp.annotator import *

from pyspark.ml import Pipeline



# Initialize Spark NLP

spark = sparknlp.start()



# Define the pipeline stages

documentAssembler = DocumentAssembler()\\

    .setInputCol("text")\\

    .setOutputCol("documents")



t5 = T5Transformer.pretrained("t5_grammar_error_corrector")\\

    .setTask("gec:")\\

    .setInputCols(["documents"])\\

    .setMaxOutputLength(200)\\

    .setOutputCol("corrections")



pipeline = Pipeline().setStages([documentAssembler, t5])



# Input data example

data = spark.createDataFrame([["She don't knows nothing about what's happening in the office."]]).toDF("text")



# Apply the pipeline for grammar correction

result = pipeline.fit(data).transform(data)

result.select("corrections.result").show(truncate=False)

''', language='python')

# Example Output
st.text("""

+---------------------------------------------------------------+

|corrections.result                                             |

+---------------------------------------------------------------+

|[She doesn't know anything about what's happening in the office.]|

+---------------------------------------------------------------+

""")

# Model Info Section
st.markdown('<div class="sub-title">Choosing the Right T5 Model for Grammar Correction</div>', unsafe_allow_html=True)

st.markdown("""

<div class="section">

    <p>For correcting grammar errors, we use the model: "t5_grammar_error_corrector". This model is fine-tuned to detect and correct various types of grammatical errors in English sentences.</p>

    <p>Explore other T5 models tailored for different NLP tasks on the <a class="link" href="https://sparknlp.org/models?annotator=T5Transformer" target="_blank">Spark NLP Models Hub</a> to find the best fit for your specific needs.</p>

</div>

""", unsafe_allow_html=True)

# References Section
st.markdown('<div class="sub-title">References</div>', unsafe_allow_html=True)

st.markdown("""

<div class="section">

    <ul>

        <li><a class="link" href="https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html" target="_blank">Google AI Blog</a>: Exploring Transfer Learning with T5</li>

        <li><a class="link" href="https://sparknlp.org/models?annotator=T5Transformer" target="_blank">Spark NLP Model Hub</a>: Explore T5 models</li>

        <li>Model used for Grammar Correction: <a class="link" href="https://sparknlp.org/2022/11/28/t5_grammar_error_corrector_en.html" target="_blank">t5_grammar_error_corrector</a></li>

        <li><a class="link" href="https://github.com/google-research/text-to-text-transfer-transformer" target="_blank">GitHub</a>: T5 Transformer repository</li>

        <li><a class="link" href="https://arxiv.org/abs/1910.10683" target="_blank">T5 Paper</a>: Detailed insights from the developers</li>

    </ul>

</div>

""", unsafe_allow_html=True)

# Community & Support Section
st.markdown('<div class="sub-title">Community & Support</div>', unsafe_allow_html=True)

st.markdown("""

<div class="section">

    <ul>

        <li><a class="link" href="https://sparknlp.org/" target="_blank">Official Website</a>: Documentation and examples</li>

        <li><a class="link" href="https://join.slack.com/t/spark-nlp/shared_invite/zt-198dipu77-L3UWNe_AJ8xqDk0ivmih5Q" target="_blank">Slack</a>: Live discussion with the community and team</li>

        <li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp" target="_blank">GitHub</a>: Bug reports, feature requests, and contributions</li>

        <li><a class="link" href="https://medium.com/spark-nlp" target="_blank">Medium</a>: Spark NLP articles</li>

        <li><a class="link" href="https://www.youtube.com/channel/UCmFOjlpYEhxf_wJUDuz6xxQ/videos" target="_blank">YouTube</a>: Video tutorials</li>

    </ul>

</div>

""", unsafe_allow_html=True)

# Quick Links Section
st.markdown('<div class="sub-title">Quick Links</div>', unsafe_allow_html=True)

st.markdown("""

<div class="section">

    <ul>

        <li><a class="link" href="https://sparknlp.org/docs/en/quickstart" target="_blank">Getting Started</a></li>

        <li><a class="link" href="https://nlp.johnsnowlabs.com/models" target="_blank">Pretrained Models</a></li>

        <li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples/python/annotation/text/english" target="_blank">Example Notebooks</a></li>

        <li><a class="link" href="https://sparknlp.org/docs/en/install" target="_blank">Installation Guide</a></li>

    </ul>

</div>

""", unsafe_allow_html=True)