Spaces:
Sleeping
Sleeping
File size: 8,042 Bytes
1c03780 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import streamlit as st
# Custom CSS for better styling
st.markdown("""
<style>
.main-title {
font-size: 36px;
color: #4A90E2;
font-weight: bold;
text-align: center;
}
.sub-title {
font-size: 24px;
color: #4A90E2;
margin-top: 20px;
}
.section {
background-color: #f9f9f9;
padding: 15px;
border-radius: 10px;
margin-top: 20px;
}
.section h2 {
font-size: 22px;
color: #4A90E2;
}
.section p, .section ul {
color: #666666;
}
.link {
color: #4A90E2;
text-decoration: none;
}
</style>
""", unsafe_allow_html=True)
# Title
st.markdown('<div class="main-title">Correct Sentences Grammar</div>', unsafe_allow_html=True)
# Introduction Section
st.markdown("""
<div class="section">
<p>Ensuring correct grammar in sentences is essential for clear and effective communication. Whether writing an email, an academic paper, or a casual message, proper grammar ensures that your message is understood as intended.</p>
<p>This page demonstrates how to implement a grammar correction pipeline using advanced NLP models. We utilize the T5 Transformer model, fine-tuned for grammar error correction, to automatically correct sentences and enhance their grammatical accuracy.</p>
</div>
""", unsafe_allow_html=True)
# T5 Transformer Overview
st.markdown('<div class="sub-title">Understanding the T5 Transformer for Grammar Correction</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The T5 (Text-To-Text Transfer Transformer) model, developed by Google, is a versatile tool for various NLP tasks, including grammar correction. By processing input sentences and applying the appropriate grammar corrections, T5 generates outputs that maintain the original meaning while correcting errors.</p>
<p>This is particularly useful for applications in writing assistance, automated editing, and educational tools, where grammatical accuracy is crucial.</p>
</div>
""", unsafe_allow_html=True)
# Performance Section
st.markdown('<div class="sub-title">Performance and Use Cases</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The T5 model has shown strong performance in grammar correction tasks. It consistently produces accurate and contextually appropriate corrections, making it a valuable tool for improving written communication across various settings.</p>
<p>This capability is beneficial for students, professionals, and anyone who needs to ensure their writing is grammatically correct. The T5 model’s efficiency in correcting errors makes it a powerful asset for enhancing the quality of written content.</p>
</div>
""", unsafe_allow_html=True)
# Implementation Section
st.markdown('<div class="sub-title">Implementing Grammar Correction</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>The following example demonstrates how to implement a grammar correction pipeline using Spark NLP. The pipeline includes a document assembler and the T5 model for performing grammar corrections.</p>
</div>
""", unsafe_allow_html=True)
st.code('''
import sparknlp
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
# Initialize Spark NLP
spark = sparknlp.start()
# Define the pipeline stages
documentAssembler = DocumentAssembler()\\
.setInputCol("text")\\
.setOutputCol("documents")
t5 = T5Transformer.pretrained("t5_grammar_error_corrector")\\
.setTask("gec:")\\
.setInputCols(["documents"])\\
.setMaxOutputLength(200)\\
.setOutputCol("corrections")
pipeline = Pipeline().setStages([documentAssembler, t5])
# Input data example
data = spark.createDataFrame([["She don't knows nothing about what's happening in the office."]]).toDF("text")
# Apply the pipeline for grammar correction
result = pipeline.fit(data).transform(data)
result.select("corrections.result").show(truncate=False)
''', language='python')
# Example Output
st.text("""
+---------------------------------------------------------------+
|corrections.result |
+---------------------------------------------------------------+
|[She doesn't know anything about what's happening in the office.]|
+---------------------------------------------------------------+
""")
# Model Info Section
st.markdown('<div class="sub-title">Choosing the Right T5 Model for Grammar Correction</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>For correcting grammar errors, we use the model: "t5_grammar_error_corrector". This model is fine-tuned to detect and correct various types of grammatical errors in English sentences.</p>
<p>Explore other T5 models tailored for different NLP tasks on the <a class="link" href="https://sparknlp.org/models?annotator=T5Transformer" target="_blank">Spark NLP Models Hub</a> to find the best fit for your specific needs.</p>
</div>
""", unsafe_allow_html=True)
# References Section
st.markdown('<div class="sub-title">References</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<ul>
<li><a class="link" href="https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html" target="_blank">Google AI Blog</a>: Exploring Transfer Learning with T5</li>
<li><a class="link" href="https://sparknlp.org/models?annotator=T5Transformer" target="_blank">Spark NLP Model Hub</a>: Explore T5 models</li>
<li>Model used for Grammar Correction: <a class="link" href="https://sparknlp.org/2022/11/28/t5_grammar_error_corrector_en.html" target="_blank">t5_grammar_error_corrector</a></li>
<li><a class="link" href="https://github.com/google-research/text-to-text-transfer-transformer" target="_blank">GitHub</a>: T5 Transformer repository</li>
<li><a class="link" href="https://arxiv.org/abs/1910.10683" target="_blank">T5 Paper</a>: Detailed insights from the developers</li>
</ul>
</div>
""", unsafe_allow_html=True)
# Community & Support Section
st.markdown('<div class="sub-title">Community & Support</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<ul>
<li><a class="link" href="https://sparknlp.org/" target="_blank">Official Website</a>: Documentation and examples</li>
<li><a class="link" href="https://join.slack.com/t/spark-nlp/shared_invite/zt-198dipu77-L3UWNe_AJ8xqDk0ivmih5Q" target="_blank">Slack</a>: Live discussion with the community and team</li>
<li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp" target="_blank">GitHub</a>: Bug reports, feature requests, and contributions</li>
<li><a class="link" href="https://medium.com/spark-nlp" target="_blank">Medium</a>: Spark NLP articles</li>
<li><a class="link" href="https://www.youtube.com/channel/UCmFOjlpYEhxf_wJUDuz6xxQ/videos" target="_blank">YouTube</a>: Video tutorials</li>
</ul>
</div>
""", unsafe_allow_html=True)
# Quick Links Section
st.markdown('<div class="sub-title">Quick Links</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<ul>
<li><a class="link" href="https://sparknlp.org/docs/en/quickstart" target="_blank">Getting Started</a></li>
<li><a class="link" href="https://nlp.johnsnowlabs.com/models" target="_blank">Pretrained Models</a></li>
<li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples/python/annotation/text/english" target="_blank">Example Notebooks</a></li>
<li><a class="link" href="https://sparknlp.org/docs/en/install" target="_blank">Installation Guide</a></li>
</ul>
</div>
""", unsafe_allow_html=True)
|