import streamlit as st # Page configuration st.set_page_config( layout="wide", initial_sidebar_state="auto" ) # Custom CSS for better styling st.markdown(""" """, unsafe_allow_html=True) # Title st.markdown('
Introduction to Longformer for Token & Sequence Classification
', unsafe_allow_html=True) # Subtitle st.markdown("""

Longformer is a transformer-based model designed to handle long documents by leveraging an attention mechanism that scales linearly with the length of the document. This makes it highly effective for tasks such as token classification and sequence classification, especially when dealing with lengthy text inputs.

""", unsafe_allow_html=True) # Tabs for Longformer Annotators tab1, tab2, tab3= st.tabs(["Longformer For Token Classification", "Longformer For Sequence Classification", "Longformer For Question Answering"]) # Tab 1: LongformerForTokenClassification with tab1: st.markdown("""

Longformer for Token Classification

Token Classification involves assigning labels to individual tokens (words or subwords) within a sentence. This is essential for tasks like Named Entity Recognition (NER), where each token is classified as a specific entity such as a person, organization, or location.

Longformer is particularly effective for token classification tasks due to its ability to handle long contexts and capture dependencies over long spans of text.

Using Longformer for token classification enables:

""", unsafe_allow_html=True) # Implementation Section st.markdown('
How to Use Longformer for Token Classification in Spark NLP
', unsafe_allow_html=True) st.markdown("""

Below is an example of how to set up a pipeline in Spark NLP using the Longformer model for token classification, specifically for Named Entity Recognition (NER).

""", unsafe_allow_html=True) st.code(''' from sparknlp.base import * from sparknlp.annotator import * from pyspark.ml import Pipeline from pyspark.sql.functions import col, expr document_assembler = DocumentAssembler() \\ .setInputCol('text') \\ .setOutputCol('document') tokenizer = Tokenizer() \\ .setInputCols(['document']) \\ .setOutputCol('token') tokenClassifier = LongformerForTokenClassification \\ .pretrained('longformer_base_token_classifier_conll03', 'en') \\ .setInputCols(['token', 'document']) \\ .setOutputCol('ner') \\ .setCaseSensitive(True) \\ .setMaxSentenceLength(512) ner_converter = NerConverter() \\ .setInputCols(['document', 'token', 'ner']) \\ .setOutputCol('entities') pipeline = Pipeline(stages=[ document_assembler, tokenizer, tokenClassifier, ner_converter ]) text = "Facebook is a social networking service launched as TheFacebook on February 4, 2004. It was founded by Mark Zuckerberg with his college roommates and fellow Harvard University students Eduardo Saverin, Andrew McCollum, Dustin Moskovitz and Chris Hughes. The website's membership was initially limited by the founders to Harvard students, but was expanded to other colleges in the Boston area, the Ivy League, and gradually most universities in the United States and Canada." example = spark.createDataFrame([[text]]).toDF("text") result = pipeline.fit(example).transform(example) result.select( expr("explode(entities) as ner_chunk") ).select( col("ner_chunk.result").alias("chunk"), col("ner_chunk.metadata.entity").alias("ner_label") ).show(truncate=False) ''', language='python') # Example Output st.text(""" +------------------+---------+ |chunk |ner_label| +------------------+---------+ |Mark Zuckerberg |PER | |Harvard University|ORG | |Eduardo Saverin |PER | |Andrew McCollum |PER | |Dustin Moskovitz |PER | |Chris Hughes |PER | |Harvard |ORG | |Boston |LOC | |Ivy |ORG | |League |ORG | |United |LOC | |States |LOC | |Canada |LOC | +------------------+---------+ """) # Model Info Section st.markdown('
Choosing the Right Longformer Model
', unsafe_allow_html=True) st.markdown("""

Spark NLP offers various Longformer models tailored for token classification tasks. Selecting the appropriate model can significantly impact performance.

Explore the available models on the Spark NLP Models Hub to find the one that fits your needs.

""", unsafe_allow_html=True) # Tab 2: LongformerForSequenceClassification with tab2: st.markdown("""

Longformer for Sequence Classification

Sequence Classification involves assigning a label to an entire sequence of text, such as determining the sentiment of a review or categorizing a document into topics. Longformer’s ability to model long-range dependencies is particularly beneficial for sequence classification tasks.

Using Longformer for sequence classification enables:

""", unsafe_allow_html=True) # Implementation Section st.markdown('
How to Use Longformer for Sequence Classification in Spark NLP
', unsafe_allow_html=True) st.markdown("""

The following example demonstrates how to set up a pipeline in Spark NLP using the Longformer model for sequence classification, particularly for sentiment analysis of movie reviews.

""", unsafe_allow_html=True) st.code(''' from sparknlp.base import * from sparknlp.annotator import * from pyspark.ml import Pipeline document_assembler = DocumentAssembler() \\ .setInputCol('text') \\ .setOutputCol('document') tokenizer = Tokenizer() \\ .setInputCols(['document']) \\ .setOutputCol('token') sequenceClassifier = LongformerForSequenceClassification \\ .pretrained('longformer_base_sequence_classifier_imdb', 'en') \\ .setInputCols(['token', 'document']) \\ .setOutputCol('class') \\ .setCaseSensitive(False) \\ .setMaxSentenceLength(1024) pipeline = Pipeline(stages=[ document_assembler, tokenizer, sequenceClassifier ]) example = spark.createDataFrame([['I really liked that movie!']]).toDF("text") result = pipeline.fit(example).transform(example) result.select('document.result','class.result').show() ''', language='python') # Example Output st.text(""" +--------------------+------+ | result|result| +--------------------+------+ |[I really liked t...| [pos]| +--------------------+------+ """) # Model Info Section st.markdown('
Choosing the Right Longformer Model
', unsafe_allow_html=True) st.markdown("""

Various Longformer models are available for sequence classification in Spark NLP. Each model is fine-tuned for specific tasks, so selecting the right one is crucial for achieving optimal performance.

Explore the available models on the Spark NLP Models Hub to find the best fit for your use case.

""", unsafe_allow_html=True) # Tab 3: LongformerForQuestionAnswering with tab3: st.markdown("""

Longformer for Question Answering

Question Answering is the task of identifying the correct answer to a question from a given context or passage. Longformer's ability to process long documents makes it highly suitable for question answering tasks, especially in cases where the context is lengthy.

Using Longformer for question answering enables:

""", unsafe_allow_html=True) # Implementation Section st.markdown('
How to Use Longformer for Question Answering in Spark NLP
', unsafe_allow_html=True) st.markdown("""

The following example demonstrates how to set up a pipeline in Spark NLP using the Longformer model for question answering, specifically tailored for SQuAD v2 dataset.

""", unsafe_allow_html=True) st.code(''' from sparknlp.base import * from sparknlp.annotator import * from pyspark.ml import Pipeline documentAssembler = MultiDocumentAssembler() \\ .setInputCols(["question", "context"]) \\ .setOutputCols(["document_question", "document_context"]) spanClassifier = LongformerForQuestionAnswering.pretrained("longformer_base_base_qa_squad2", "en") \\ .setInputCols(["document_question", "document_context"]) \\ .setOutputCol("answer")\\ .setCaseSensitive(True) pipeline = Pipeline(stages=[documentAssembler, spanClassifier]) data = spark.createDataFrame([["What is my name?", "My name is Clara and I live in Berkeley."]]).toDF("question", "context") result = pipeline.fit(data).transform(data) ''', language='python') # Example Output st.text(""" +-------+ | result| +-------+ |[Clara]| +-------+ """) # Model Info Section st.markdown('
Choosing the Right Longformer Model
', unsafe_allow_html=True) st.markdown("""

Various Longformer models are available for question answering in Spark NLP. Each model is fine-tuned for specific tasks, so selecting the right one is crucial for achieving optimal performance.

Explore the available models on the Spark NLP Models Hub to find the best fit for your use case.

""", unsafe_allow_html=True) # Footer st.markdown('
Community & Support
', unsafe_allow_html=True) st.markdown("""
""", unsafe_allow_html=True) st.markdown('
Quick Links
', unsafe_allow_html=True) st.markdown("""
""", unsafe_allow_html=True)