File size: 8,284 Bytes
f6ed594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import streamlit as st

# Custom CSS for better styling
st.markdown("""

    <style>

        .main-title {

            font-size: 36px;

            color: #4A90E2;

            font-weight: bold;

            text-align: center;

        }

        .sub-title {

            font-size: 24px;

            color: #4A90E2;

            margin-top: 20px;

        }

        .section {

            background-color: #f9f9f9;

            padding: 15px;

            border-radius: 10px;

            margin-top: 20px;

        }

        .section h2 {

            font-size: 22px;

            color: #4A90E2;

        }

        .section p, .section ul {

            color: #666666;

        }

        .link {

            color: #4A90E2;

            text-decoration: none;

        }

        .benchmark-table {

            width: 100%;

            border-collapse: collapse;

            margin-top: 20px;

        }

        .benchmark-table th, .benchmark-table td {

            border: 1px solid #ddd;

            padding: 8px;

            text-align: left;

        }

        .benchmark-table th {

            background-color: #4A90E2;

            color: white;

        }

        .benchmark-table td {

            background-color: #f2f2f2;

        }

    </style>

""", unsafe_allow_html=True)

# Main Title
st.markdown('<div class="main-title">Image Zero Shot Classification with CLIP</div>', unsafe_allow_html=True)

# Description
st.markdown("""

<div class="section">

    <p><strong>CLIP (Contrastive Language-Image Pre-Training)</strong> is a neural network trained on image and text pairs. It has the capability to classify images without requiring hard-coded labels, making it highly flexible. Labels can be provided during inference, similar to the zero-shot capabilities of GPT-2 and GPT-3 models.</p>

    <p>This model was imported from Hugging Face Transformers: <a class="link" href="https://huggingface.co/openai/clip-vit-base-patch32" target="_blank">CLIP Model on Hugging Face</a></p>

</div>

""", unsafe_allow_html=True)

# How to Use
st.markdown('<div class="sub-title">How to Use the Model</div>', unsafe_allow_html=True)
st.code('''

import sparknlp

from sparknlp.base import *

from sparknlp.annotator import *

from pyspark.ml import Pipeline



# Load image data

imageDF = spark.read \\

    .format("image") \\

    .option("dropInvalid", value = True) \\

    .load("src/test/resources/image/")



# Define Image Assembler

imageAssembler: ImageAssembler = ImageAssembler() \\

    .setInputCol("image") \\

    .setOutputCol("image_assembler")



# Define candidate labels

candidateLabels = [

    "a photo of a bird",

    "a photo of a cat",

    "a photo of a dog",

    "a photo of a hen",

    "a photo of a hippo",

    "a photo of a room",

    "a photo of a tractor",

    "a photo of an ostrich",

    "a photo of an ox"]



# Define CLIP classifier

imageClassifier = CLIPForZeroShotClassification \\

    .pretrained() \\

    .setInputCols(["image_assembler"]) \\

    .setOutputCol("label") \\

    .setCandidateLabels(candidateLabels)



# Create pipeline

pipeline = Pipeline().setStages([imageAssembler, imageClassifier])



# Apply pipeline to image data

pipelineDF = pipeline.fit(imageDF).transform(imageDF)



# Show results

pipelineDF \\

  .selectExpr("reverse(split(image.origin, '/'))[0] as image_name", "label.result") \\

  .show(truncate=False)

''', language='python')

# Results
st.markdown('<div class="sub-title">Results</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <table class="benchmark-table">

        <tr>

            <th>Image Name</th>

            <th>Result</th>

        </tr>

        <tr>

            <td>palace.JPEG</td>

            <td>[a photo of a room]</td>

        </tr>

        <tr>

            <td>egyptian_cat.jpeg</td>

            <td>[a photo of a cat]</td>

        </tr>

        <tr>

            <td>hippopotamus.JPEG</td>

            <td>[a photo of a hippo]</td>

        </tr>

        <tr>

            <td>hen.JPEG</td>

            <td>[a photo of a hen]</td>

        </tr>

        <tr>

            <td>ostrich.JPEG</td>

            <td>[a photo of an ostrich]</td>

        </tr>

        <tr>

            <td>junco.JPEG</td>

            <td>[a photo of a bird]</td>

        </tr>

        <tr>

            <td>bluetick.jpg</td>

            <td>[a photo of a dog]</td>

        </tr>

        <tr>

            <td>chihuahua.jpg</td>

            <td>[a photo of a dog]</td>

        </tr>

        <tr>

            <td>tractor.JPEG</td>

            <td>[a photo of a tractor]</td>

        </tr>

        <tr>

            <td>ox.JPEG</td>

            <td>[a photo of an ox]</td>

        </tr>

    </table>

</div>

""", unsafe_allow_html=True)

# Model Information
st.markdown('<div class="sub-title">Model Information</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <table class="benchmark-table">

        <tr>

            <th>Attribute</th>

            <th>Description</th>

        </tr>

        <tr>

            <td><strong>Model Name</strong></td>

            <td>zero_shot_classifier_clip_vit_base_patch32</td>

        </tr>

        <tr>

            <td><strong>Compatibility</strong></td>

            <td>Spark NLP 5.2.0+</td>

        </tr>

        <tr>

            <td><strong>License</strong></td>

            <td>Open Source</td>

        </tr>

        <tr>

            <td><strong>Edition</strong></td>

            <td>Official</td>

        </tr>

        <tr>

            <td><strong>Input Labels</strong></td>

            <td>[image_assembler]</td>

        </tr>

        <tr>

            <td><strong>Output Labels</strong></td>

            <td>[classification]</td>

        </tr>

        <tr>

            <td><strong>Language</strong></td>

            <td>en</td>

        </tr>

        <tr>

            <td><strong>Size</strong></td>

            <td>392.8 MB</td>

        </tr>

    </table>

</div>

""", unsafe_allow_html=True)

# Data Source Section
st.markdown('<div class="sub-title">Data Source</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <p>The CLIP model is available on <a class="link" href="https://huggingface.co/openai/clip-vit-base-patch32" target="_blank">Hugging Face</a>. This model was trained on image-text pairs and can be used for zero-shot image classification.</p>

</div>

""", unsafe_allow_html=True)

# References
st.markdown('<div class="sub-title">References</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <ul>

        <li><a class="link" href="https://sparknlp.org/2023/12/02/zero_shot_classifier_clip_vit_base_patch32_en.html" target="_blank" rel="noopener">CLIP Model on Spark NLP</a></li>

        <li><a class="link" href="https://huggingface.co/openai/clip-vit-base-patch32" target="_blank" rel="noopener">CLIP Model on Hugging Face</a></li>

        <li><a class="link" href="https://github.com/openai/CLIP" target="_blank" rel="noopener">CLIP GitHub Repository</a></li>

        <li><a class="link" href="https://arxiv.org/abs/2103.00020" target="_blank" rel="noopener">CLIP Paper</a></li>

    </ul>

</div>

""", unsafe_allow_html=True)

# Community & Support
st.markdown('<div class="sub-title">Community & Support</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <ul>

        <li><a class="link" href="https://sparknlp.org/" target="_blank">Official Website</a>: Documentation and examples</li>

        <li><a class="link" href="https://join.slack.com/t/spark-nlp/shared_invite/zt-198dipu77-L3UWNe_AJ8xqDk0ivmih5Q" target="_blank">Slack</a>: Live discussion with the community and team</li>

        <li><a class="link" href="https://github.com/JohnSnowLabs/spark-nlp" target="_blank">GitHub</a>: Bug reports, feature requests, and contributions</li>

        <li><a class="link" href="https://medium.com/spark-nlp" target="_blank">Medium</a>: Spark NLP articles</li>

        <li><a class="link" href="https://www.youtube.com/channel/UCmFOjlpYEhxf_wJUDuz6xxQ/videos" target="_blank">YouTube</a>: Video tutorials</li>

    </ul>

</div>

""", unsafe_allow_html=True)