File size: 4,118 Bytes
2b86da8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6ed594
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import streamlit as st
import sparknlp
import os
import pandas as pd

from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
from sparknlp.pretrained import PretrainedPipeline
from streamlit_tags import st_tags

# Page configuration
st.set_page_config(
    layout="wide", 
    initial_sidebar_state="auto"
)

# CSS for styling
st.markdown("""
    <style>
        .main-title {
            font-size: 36px;
            color: #4A90E2;
            font-weight: bold;
            text-align: center;
        }
        .section {
            background-color: #f9f9f9;
            padding: 10px;
            border-radius: 10px;
            margin-top: 10px;
        }
        .section p, .section ul {
            color: #666666;
        }
    </style>
""", unsafe_allow_html=True)

@st.cache_resource
def init_spark():
    return sparknlp.start()

@st.cache_resource
def create_pipeline(model, labels):
    image_assembler = ImageAssembler() \
        .setInputCol("image") \
        .setOutputCol("image_assembler")

    imageClassifier = CLIPForZeroShotClassification \
        .pretrained() \
        .setInputCols(["image_assembler"]) \
        .setOutputCol("label") \
        .setCandidateLabels(labels)

    pipeline = Pipeline(stages=[
        image_assembler,
        imageClassifier,
    ])
    return pipeline

def fit_data(pipeline, data):
    model = pipeline.fit(data)
    light_pipeline = LightPipeline(model)
    annotations_result = light_pipeline.fullAnnotateImage(data)
    return annotations_result[0]['label'][0].result

def save_uploadedfile(uploadedfile):
    filepath = os.path.join(IMAGE_FILE_PATH, uploadedfile.name)
    with open(filepath, "wb") as f:
        if hasattr(uploadedfile, 'getbuffer'):
            f.write(uploadedfile.getbuffer())
        else:
            f.write(uploadedfile.read())
        
# Sidebar content
model = st.sidebar.selectbox(
    "Choose the pretrained model",
    ["CLIPForZeroShotClassification"],
    help="For more info about the models visit: https://sparknlp.org/models"
)

# Set up the page layout
st.markdown(f'<div class="main-title">CLIPForZeroShotClassification</div>', unsafe_allow_html=True)
# st.markdown(f'<div class="section"><p>{sub_title}</p></div>', unsafe_allow_html=True)

# Reference notebook link in sidebar
link = """
<a href="https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/annotation/image/CLIPForZeroShotClassification.ipynb">
    <img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>
</a>
"""
st.sidebar.markdown('Reference notebook:')
st.sidebar.markdown(link, unsafe_allow_html=True)

# Load examples
IMAGE_FILE_PATH = "input"
image_files = sorted([file for file in os.listdir(IMAGE_FILE_PATH) if file.split('.')[-1]=='png' or file.split('.')[-1]=='jpg' or file.split('.')[-1]=='JPEG' or file.split('.')[-1]=='jpeg'])

img_options = st.selectbox("Select an image", image_files)
uploadedfile = st.file_uploader("Try it for yourself!")

if uploadedfile:
    file_details = {"FileName":uploadedfile.name,"FileType":uploadedfile.type}
    save_uploadedfile(uploadedfile)
    selected_image = f"{IMAGE_FILE_PATH}/{uploadedfile.name}"
elif img_options:
    selected_image = f"{IMAGE_FILE_PATH}/{img_options}"

candidateLabels = [
    "a photo of a bird",
    "a photo of a cat",
    "a photo of a dog",
    "a photo of a hen",
    "a photo of a hippo",
    "a photo of a room",
    "a photo of a tractor",
    "a photo of an ostrich",
    "a photo of an ox"]

lables = st_tags(
    label='Select labels',
    text='Press enter to add more',
    value=candidateLabels,
    maxtags = -1)

st.subheader('Classified Image')

image_size = st.slider('Image Size', 400, 1000, value=400, step = 100)

try:
    st.image(f"{IMAGE_FILE_PATH}/{selected_image}", width=image_size)
except:
    st.image(selected_image, width=image_size)

st.subheader('Classification')

init_spark()
Pipeline = create_pipeline(model, lables)
output = fit_data(Pipeline, selected_image)

st.markdown(f'This document has been classified as  : **{output}**')