import streamlit as st import pandas as pd # Custom CSS for better styling st.markdown(""" """, unsafe_allow_html=True) # Main Title st.markdown('
Arabic Named Entity Recognition - BERT-based Model
', unsafe_allow_html=True) # Introduction st.markdown("""

Named Entity Recognition (NER) models identify and categorize important entities in a text. This page details a BERT-based NER model for Arabic texts, including Modern Standard Arabic (MSA), Dialectal Arabic (DA), and Classical Arabic (CA). The model is pretrained and available on Hugging Face, then imported into Spark NLP.

""", unsafe_allow_html=True) # Model Description st.markdown('
Description
', unsafe_allow_html=True) st.markdown("""

The bert_ner_bert_base_arabic_camelbert_mix_ner model is pretrained for Arabic named entity recognition, originally trained by CAMeL-Lab. It can identify the following types of entities:

""", unsafe_allow_html=True) # Setup Instructions st.markdown('
Setup
', unsafe_allow_html=True) st.markdown('

To use the model, you need Spark NLP installed. You can install it using pip:

', unsafe_allow_html=True) st.code(""" pip install spark-nlp pip install pyspark """, language="bash") st.markdown("

Then, import Spark NLP and start a Spark session:

", unsafe_allow_html=True) st.code(""" import sparknlp # Start Spark Session spark = sparknlp.start() """, language='python') # Example Usage st.markdown('
Example Usage with Arabic NER Model
', unsafe_allow_html=True) st.markdown("""

Below is an example of how to set up and use the bert_ner_bert_base_arabic_camelbert_mix_ner model for named entity recognition in Arabic:

""", unsafe_allow_html=True) st.code(''' from sparknlp.base import * from sparknlp.annotator import * from pyspark.ml import Pipeline from pyspark.sql.functions import col, expr, round, concat, lit, explode # Define the components of the pipeline documentAssembler = DocumentAssembler() \\ .setInputCol("text") \\ .setOutputCol("document") sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx") \\ .setInputCols(["document"]) \\ .setOutputCol("sentence") tokenizer = Tokenizer() \\ .setInputCols(["sentence"]) \\ .setOutputCol("token") tokenClassifier = BertForTokenClassification.pretrained("bert_ner_bert_base_arabic_camelbert_mix_ner", "ar") \\ .setInputCols(["sentence", "token"]) \\ .setOutputCol("ner") ner_converter = NerConverter()\\ .setInputCols(["document", "token", "ner"])\\ .setOutputCol("ner_chunk") # Create the pipeline pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier, ner_converter]) # Create sample data example = """ كانت مدينة بغداد، العاصمة الحالية للعراق، مركزاً ثقافياً وحضارياً عظيماً في العصور الوسطى. تأسست في القرن الثامن الميلادي على يد الخليفة العباسي أبو جعفر المنصور. كانت بغداد مدينة المعرفة والعلم، حيث توافد إليها العلماء والفلاسفة من كل أنحاء العالم الإسلامي للدراسة في بيت الحكمة. كانت مكتباتها تحتوي على آلاف المخطوطات النادرة، وكانت تشتهر بمدارسها العلمية والطبية والفلكية. في عام 1258، سقطت بغداد في يد المغول بقيادة هولاكو خان، مما أدى إلى تدمير جزء كبير من المدينة وخسارة العديد من النفائس. """ data = spark.createDataFrame([[example]]).toDF("text") # Fit and transform data with the pipeline result = pipeline.fit(data).transform(data) # Select the result, entity result.select( expr("explode(ner_chunk) as ner_chunk") ).select( col("ner_chunk.result").alias("chunk"), col("ner_chunk.metadata").getItem("entity").alias("ner_label") ).show(truncate=False) ''', language="python") # Data for the DataFrame data = { "chunk": ["جعفر المنصور", "بغداد", "بغداد", "هولاكو"], "ner_label": ["PERS", "LOC", "LOC", "PERS"] } # Creating the DataFrame df = pd.DataFrame(data) df.index += 1 st.dataframe(df) # Model Information st.markdown('
Model Information
', unsafe_allow_html=True) st.markdown("""

The bert_ner_bert_base_arabic_camelbert_mix_ner model details are as follows:

""", unsafe_allow_html=True) # Summary st.markdown('
Summary
', unsafe_allow_html=True) st.markdown("""

This page provided an overview of the bert_ner_bert_base_arabic_camelbert_mix_ner model for Arabic NER. We discussed how to set up and use the model with Spark NLP, including example code and results. We also provided details on the model's specifications and links to relevant resources for further exploration.

""", unsafe_allow_html=True) # References st.markdown('
Model References
', unsafe_allow_html=True) st.markdown("""
""", unsafe_allow_html=True) # Community & Support st.markdown('
Community & Support
', unsafe_allow_html=True) st.markdown("""
""", unsafe_allow_html=True)