import copy import json import math import re import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter ''' Much of this code is taken from HuggingFace's OpenAI LM Implementation here: https://github.com/huggingface/pytorch-openai-transformer-lm ''' def gelu(x): return (0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))) def swish(x): return x * torch.sigmoid(x) ACT_FNS = { 'relu': nn.ReLU, 'swish': swish, 'gelu': gelu } class LayerNorm(nn.Module): "Construct a layernorm module in the OpenAI style \ (epsilon inside the square root)." def __init__(self, n_state, e=1e-5): super(LayerNorm, self).__init__() self.g = nn.Parameter(torch.ones(n_state)) self.b = nn.Parameter(torch.zeros(n_state)) self.e = e def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.e) return self.g * x + self.b class Conv1D(nn.Module): def __init__(self, nf, rf, nx): super(Conv1D, self).__init__() self.rf = rf self.nf = nf if rf == 1: # faster 1x1 conv w = torch.empty(nx, nf) nn.init.normal_(w, std=0.02) self.w = Parameter(w) self.b = Parameter(torch.zeros(nf)) else: # was used to train LM raise NotImplementedError def forward(self, x): if self.rf == 1: size_out = x.size()[:-1] + (self.nf,) x = torch.addmm(self.b, x.view(-1, x.size(-1)), self.w) x = x.view(*size_out) else: raise NotImplementedError return x class Attention(nn.Module): def __init__(self, nx, n_ctx, cfg, scale=False): super(Attention, self).__init__() n_state = nx # in Attention: n_state=768 (nx=n_embd) assert n_state % cfg.nH == 0 self.register_buffer('b', torch.tril(torch.ones( n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx)) self.n_head = cfg.nH self.split_size = n_state self.scale = scale self.c_attn = Conv1D(n_state * 3, 1, nx) self.c_proj = Conv1D(n_state, 1, nx) self.attn_dropout = nn.Dropout(cfg.adpt) self.resid_dropout = nn.Dropout(cfg.rdpt) # dimensions of w: (batch_size x num_heads x seq_length x seq_length) def _attn(self, q, k, v, sequence_mask): w = torch.matmul(q, k) if self.scale: w = w / math.sqrt(v.size(-1)) b_subset = self.b[:, :, :w.size(-2), :w.size(-1)] if sequence_mask is not None: b_subset = b_subset * sequence_mask.view( sequence_mask.size(0), 1, -1) b_subset = b_subset.permute(1, 0, 2, 3) w = w * b_subset + -1e9 * (1 - b_subset) w = nn.Softmax(dim=-1)(w) w = self.attn_dropout(w) return torch.matmul(w, v) def merge_heads(self, x): x = x.permute(0, 2, 1, 3).contiguous() new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states def split_heads(self, x, k=False): new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states if k: return x.permute(0, 2, 3, 1) else: return x.permute(0, 2, 1, 3) def forward(self, x, sequence_mask): x = self.c_attn(x) query, key, value = x.split(self.split_size, dim=2) query = self.split_heads(query) key = self.split_heads(key, k=True) value = self.split_heads(value) a = self._attn(query, key, value, sequence_mask) a = self.merge_heads(a) a = self.c_proj(a) a = self.resid_dropout(a) return a class MLP(nn.Module): def __init__(self, n_state, cfg): # in MLP: n_state=3072 (4 * n_embd) super(MLP, self).__init__() nx = cfg.hSize self.c_fc = Conv1D(n_state, 1, nx) self.c_proj = Conv1D(nx, 1, n_state) self.act = ACT_FNS[cfg.afn] self.dropout = nn.Dropout(cfg.rdpt) def forward(self, x): h = self.act(self.c_fc(x)) h2 = self.c_proj(h) return self.dropout(h2) class Block(nn.Module): def __init__(self, n_ctx, cfg, scale=False): super(Block, self).__init__() nx = cfg.hSize self.attn = Attention(nx, n_ctx, cfg, scale) self.ln_1 = LayerNorm(nx) self.mlp = MLP(4 * nx, cfg) self.ln_2 = LayerNorm(nx) def forward(self, x, sequence_mask): a = self.attn(x, sequence_mask) n = self.ln_1(x + a) m = self.mlp(n) h = self.ln_2(n + m) return h class TransformerModel(nn.Module): """ Transformer model """ def __init__(self, cfg, vocab=40990, n_ctx=512): super(TransformerModel, self).__init__() self.vocab = vocab self.embed = nn.Embedding(vocab, cfg.hSize) self.drop = nn.Dropout(cfg.edpt) block = Block(n_ctx, cfg, scale=True) self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(cfg.nL)]) nn.init.normal_(self.embed.weight, std=0.02) def forward(self, x, sequence_mask): x = x.view(-1, x.size(-2), x.size(-1)) e = self.embed(x) # Add the position information to the input embeddings h = e.sum(dim=2) for block in self.h: h = block(h, sequence_mask) return h class LMModel(nn.Module): """ Transformer with language model head only """ def __init__(self, cfg, vocab=40990, n_ctx=512, return_probs=False, return_acts=False): super(LMModel, self).__init__() self.transformer = TransformerModel(cfg, vocab=vocab, n_ctx=n_ctx) self.lm_head = LMHead(self.transformer, cfg, trunc_and_reshape=False) self.return_probs = return_probs self.return_acts = return_acts if self.return_probs or self.return_acts: pos_emb_mask = torch.zeros(1, 1, vocab) pos_emb_mask[:, :, -n_ctx:] = -1e12 self.register_buffer('pos_emb_mask', pos_emb_mask) def forward(self, x, sequence_mask=None): h = self.transformer(x, sequence_mask) lm_logits = self.lm_head(h) if self.return_probs: lm_logits = F.softmax(lm_logits + self.pos_emb_mask, dim=-1) elif self.return_acts: lm_logits = lm_logits + self.pos_emb_mask return h, lm_logits class LMHead(nn.Module): """ Language Model Head for the transformer """ def __init__(self, model, cfg, trunc_and_reshape=True): super(LMHead, self).__init__() self.n_embd = cfg.hSize embed_shape = model.embed.weight.shape self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False) self.decoder.weight = model.embed.weight # Tied weights self.trunc_and_reshape = trunc_and_reshape # XD def forward(self, h): # Truncated Language modeling logits (we remove the last token) h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd) \ if self.trunc_and_reshape else h # XD lm_logits = self.decoder(h_trunc) return lm_logits def load_openai_pretrained_model(model, n_ctx=-1, n_special=-1, n_transfer=12, n_embd=768, path='./model/', path_names='./'): # Load weights from TF model print("Loading weights...") names = json.load(open(path_names + 'parameters_names.json')) shapes = json.load(open(path + 'params_shapes.json')) offsets = np.cumsum([np.prod(shape) for shape in shapes]) init_params = [np.load(path + 'params_{}.npy'.format(n)) for n in range(10)] init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1] init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)] if n_ctx > 0: init_params[0] = init_params[0][:n_ctx] if n_special > 0: init_params[0] = np.concatenate( [init_params[1], (np.random.randn(n_special, n_embd) * 0.02).astype(np.float32), init_params[0] ], 0) else: init_params[0] = np.concatenate( [init_params[1], init_params[0] ], 0) del init_params[1] if n_transfer == -1: n_transfer = 0 else: n_transfer = 1 + n_transfer * 12 init_params = [arr.squeeze() for arr in init_params] try: assert model.embed.weight.shape == init_params[0].shape except AssertionError as e: e.args += (model.embed.weight.shape, init_params[0].shape) raise model.embed.weight.data = torch.from_numpy(init_params[0]) for name, ip in zip(names[1:n_transfer], init_params[1:n_transfer]): name = name[6:] # skip "model/" assert name[-2:] == ":0" name = name[:-2] name = name.split('/') pointer = model for m_name in name: if re.fullmatch(r'[A-Za-z]+\d+', m_name): l = re.split(r'(\d+)', m_name) else: l = [m_name] pointer = getattr(pointer, l[0]) if len(l) >= 2: num = int(l[1]) pointer = pointer[num] try: assert pointer.shape == ip.shape except AssertionError as e: e.args += (pointer.shape, ip.shape) raise pointer.data = torch.from_numpy(ip) class dotdict(dict): """dot.notation access to dictionary attributes""" __getattr__ = dict.get __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ DEFAULT_CONFIG = dotdict({ 'n_embd': 768, 'n_head': 12, 'n_layer': 12, 'embd_pdrop': 0.1, 'attn_pdrop': 0.1, 'resid_pdrop': 0.1, 'afn': 'gelu', 'clf_pdrop': 0.1})