import torch import torch.nn as nn import torch.nn.functional as F import comet.src.data.data as data import comet.src.data.config as cfg import comet.src.models.utils as model_utils import comet.src.evaluate.utils as eval_utils import comet.src.train.batch as batch_utils def make_sampler(sampler_type, opt, *args, **kwargs): print("Initializing Greedy Sampler") return GreedySampler(opt, *args, **kwargs) class Sampler(): def __init__(self, opt, data_loader, batch_mode=False): # Token on which to end sampling self.end_token = data_loader.vocab_encoder[data.end_token] self.opt = opt def generate_sequence(self, batch, model): raise class GreedySampler(Sampler): def __init__(self, opt, data_loader, batch_mode=True): super(GreedySampler, self).__init__(opt, data_loader) def append_batch(self, X, next_idx, mask): next_pos = X[:, -1:, 1] + 1 next_x = torch.cat((next_idx, next_pos), -1).unsqueeze(1) next_mask = torch.cat([mask, torch.ones(X.size(0), 1, device=mask.device)], 1) return torch.cat((X, next_x), 1), next_mask def generate_sequence(self, batch, model, data_loader, start_idx, end_len): XMB = batch["sequences"][:, :start_idx] MMB = batch["attention_mask"][:, :start_idx] XMB = model_utils.prepare_position_embeddings( self.opt, data_loader.vocab_encoder, XMB.unsqueeze(-1)) _, lp = model( XMB.unsqueeze(1), sequence_mask=MMB) lm_probs = F.log_softmax(lp, dim=-1) values, indices = lm_probs[:, -1, :].max(dim=-1) seqs = indices.clone().unsqueeze(1) loss = values counts = 1 next_pos = XMB[:, -1:, 1] + 1 next_x = torch.cat((indices.view(-1, 1), next_pos), -1).unsqueeze(1) XMB = torch.cat((XMB, next_x), 1) MMB = torch.cat([MMB, torch.ones(XMB.size(0), 1, device=MMB.device)], 1) # Sample from top k for _ in range(self.opt.eval.smax): _, lp = model( XMB.unsqueeze(1), sequence_mask=MMB) lm_probs = F.log_softmax(lp, dim=-1) # Sample from top k values, next_idx = lm_probs[:, -1, :].max(dim=-1) loss += values counts += 1 next_idx = next_idx.unsqueeze(1) seqs = torch.cat([seqs, next_idx], 1) if (next_idx.item() == self.end_token) or (_ == end_len - 1): break XMB, MMB = self.append_batch(XMB, next_idx, MMB) beams = [] for beam in seqs: beams.append(" ".join("".join( [data_loader.vocab_decoder[tok.item()].replace( '', ' ').replace('\n', '') for tok in beam if tok != self.end_token]).split())) sampling_result = { "sequence": beams[0], "beams": beams, "beam_losses": [loss.item()], "loss": loss.item(), "beam_lengths": [counts], "length": counts } return sampling_result class TopKSampler(Sampler): def __init__(self, opt, data_loader, batch_mode=True): super(TopKSampler, self).__init__(opt, data_loader) def append_batch(self, X, next_idx, mask): next_pos = X[:, -1:, 1] + 1 next_x = torch.cat((next_idx, next_pos), -1).unsqueeze(1) next_mask = torch.cat([mask, torch.ones(X.size(0), 1, device=mask.device)], 1) return torch.cat((X, next_x), 1), next_mask def generate_sequence(self, batch, model, data_loader, start_idx, end_len): # start_idx = context_size_event + 1 # start_idx = max_e1 + max_r # end_idx = context_size_effect - 1 # end_idx = max_e2 XMB = batch["sequences"][:, :start_idx] MMB = batch["attention_mask"][:, :start_idx] XMB = model_utils.prepare_position_embeddings( self.opt, data_loader.vocab_encoder, XMB.unsqueeze(-1)) _, lp = model( XMB.unsqueeze(1), sequence_mask=MMB) lm_probs = F.log_softmax(lp, dim=-1) values, indices = lm_probs[:, -1, :].topk(self.opt.eval.k) seqs = indices.t().clone() losses = - values.view(-1, 1) ended = (seqs == self.end_token).float() counts = (1 - ended) XMB = XMB.repeat(self.opt.eval.k, 1, 1) MMB = MMB.repeat(self.opt.eval.k, 1) next_pos = XMB[:, -1:, 1] + 1 next_x = torch.cat((indices.view(self.opt.eval.k, -1), next_pos), -1).unsqueeze(1) XMB = torch.cat((XMB, next_x), 1) MMB = torch.cat([MMB, torch.ones(XMB.size(0), 1, device=MMB.device)], 1) # Sample from top k for _ in range(end_len): _, lp = model(XMB.unsqueeze(1), sequence_mask=MMB) lm_probs = F.log_softmax(lp, dim=-1) # Sample from top k values, indices = lm_probs[:, -1, :].topk(self.opt.eval.k) choice = torch.multinomial(values.exp(), 1) next_idx = indices.gather(-1, choice) ended = ended + (next_idx == self.end_token).float() * (1 - ended) next_idx = next_idx * (1 - ended).long() + ended.long() * self.end_token counts += (1 - ended) seqs = torch.cat([seqs, next_idx], 1) if ended.sum().item() == self.opt.eval.k: break losses -= values.gather(-1, choice) * (1 - ended) XMB, MMB = self.append_batch(XMB, next_idx, MMB) beams = [] for beam in seqs: beams.append(" ".join("".join( [data_loader.vocab_decoder[tok.item()].replace( '', ' ').replace('\n', '') for tok in beam if tok != self.end_token]).split())) sampling_result = { "sequence": beams[0], "beams": beams, "beam_losses": losses.squeeze().tolist(), "loss": losses[0].item(), "beam_lengths": counts.long().squeeze().tolist(), "length": counts[0].long().item() } return sampling_result class BeamSampler(TopKSampler): def __init__(self, opt, data_loader, batch_mode=True, scorer=None): super(BeamSampler, self).__init__(opt, data_loader, batch_mode) self.kill_mask = torch.ones(opt.eval.bs, opt.eval.bs).to(cfg.device) * 9000 self.kill_mask[:, 0] = 0 def make_batch(self, X): X = np.array(X) assert X.ndim in [1, 2] if X.ndim == 1: X = np.expand_dims(X, axis=0) pos_enc = np.arange(n_vocab + n_special, n_vocab + n_special + X.shape[-1]) pos_enc = np.expand_dims(pos_enc, axis=0) batch = np.stack([X, pos_enc], axis=-1) batch = torch.tensor(batch, dtype=torch.long).to(device) return batch def append_batch(self, X, beam_toks, mask): next_pos = X[:, -1:, 1] + 1 next_x = torch.cat((beam_toks.unsqueeze(1), next_pos), -1).unsqueeze(1) next_mask = torch.cat([mask, torch.ones(X.size(0), 1, device=mask.device)], 1) return torch.cat((X, next_x), 1), next_mask def generate_sequence(self, batch, model, data_loader, start_idx, end_len): # start_idx = context_size_event + 1 # start_idx = max_e1 + max_r # end_idx = context_size_effect - 1 # end_idx = max_e2 XMB = batch["sequences"][:, :start_idx] MMB = batch["attention_mask"][:, :start_idx] XMB = model_utils.prepare_position_embeddings( self.opt, data_loader.vocab_encoder, XMB.unsqueeze(-1)) tokens = [] beam_losses = [] # Beam Search beam_lls, beam_toks, beam_seqs = None, None, None _, lp = model(XMB.unsqueeze(1), sequence_mask=MMB) lm_probs = F.log_softmax(lp, dim=-1) dist = lm_probs[:, -1, :].squeeze() beam_lls, beam_toks = dist.topk(self.opt.eval.bs) beam_losses.append(beam_lls) ended = (beam_toks == self.end_token).float() counts = (2 - ended) beam_toks = beam_toks.unsqueeze(1) beam_seqs = beam_toks.clone() XMB = XMB.repeat(self.opt.eval.bs, 1, 1) MMB = MMB.repeat(self.opt.eval.bs, 1) next_pos = XMB[:, -1:, 1] + 1 next_x = torch.cat((beam_toks, next_pos), -1).unsqueeze(1) XMB = torch.cat((XMB, next_x), 1) MMB = torch.cat([MMB, torch.ones(XMB.size(0), 1, device=MMB.device)], 1) for _ in range(end_len): # Compute distribution for current beam _, lp = model( XMB.unsqueeze(1), sequence_mask=MMB) lm_probs = F.log_softmax(lp, dim=-1) dist = lm_probs[:, -1, :].squeeze() # get hypothesis tokens for distribution hyp_beam_lls, hyp_beam_toks = dist.topk(self.opt.eval.bs) # Compute masks and expand beam expanded_ended = ended.unsqueeze(1).repeat(1, self.opt.eval.bs) hypothesis_mask = expanded_ended * self.kill_mask + (1 - expanded_ended) paper_results = False if paper_results: # Results from paper with slightly buggy beam search current_beam_lls = beam_lls.unsqueeze(1).repeat( 1, self.opt.eval.bs).view(self.opt.eval.bs**2) else: # Current beam search implementation current_beam_lls = beam_losses[-1].unsqueeze(1).repeat( 1, self.opt.eval.bs).view(self.opt.eval.bs**2) # Compute losses of hypotheses, masking those that have ended hyp_beam_lls = (hyp_beam_lls.view(self.opt.eval.bs**2) * hypothesis_mask.view(-1)) + current_beam_lls # Get normalizer for sequences temp_counts = counts.unsqueeze(1).repeat(1, self.opt.eval.bs).view( self.opt.eval.bs ** 2) # Select best beams with lowest aggregate loss beam_lls, top_beam_idxs = (hyp_beam_lls / temp_counts).topk(self.opt.eval.bs) # Update placements in beam based on selecetion beam_losses = [i.index_select(0, top_beam_idxs // self.opt.eval.bs) for i in beam_losses] ended = ended.index_select(0, top_beam_idxs // self.opt.eval.bs) counts = temp_counts.index_select(0, top_beam_idxs) # Save beam losses beam_losses.append(beam_lls * counts) # Update beam tokens ended_mask = (1 - ended).long() end_replacement = (self.end_token * ended).long() next_toks = hyp_beam_toks.view(-1)[top_beam_idxs] beam_toks = next_toks * ended_mask + end_replacement # Update ended and counts ended = ended + (beam_toks == self.end_token).float() * (1 - ended) counts = counts + (1 - ended) # Update beam sequences beam_seqs = beam_seqs.t().repeat(self.opt.eval.bs, 1).t().contiguous().view( self.opt.eval.bs**2, -1)[top_beam_idxs] beam_seqs = torch.cat((beam_seqs, beam_toks.unsqueeze(1)), dim=1) # I have no idea what's going on but Ari's on point with it XMB = XMB.transpose(0, 1).transpose(1, 2).repeat( self.opt.eval.bs, 1, 1).transpose(2, 1).transpose( 1, 0).contiguous().view( self.opt.eval.bs**2, XMB.size(1), XMB.size(2))[top_beam_idxs] XMB, MMB = self.append_batch(XMB, beam_toks, MMB) if (beam_toks == self.end_token).sum().item() == self.opt.eval.bs: break beams = [] for beam in beam_seqs: beams.append(" ".join("".join( [data_loader.vocab_decoder[tok.item()].replace( '', ' ').replace('\n', '') for tok in beam if tok != self.end_token]).split())) sampling_result = { "sequence": beams[0], "beams": beams, "beam_losses": beam_lls.tolist(), "loss": beam_lls[0].item(), "beam_lengths": counts.tolist(), "length": counts[0].item() } return sampling_result