Minh Q. Le
Pushed COSMIC code
a446b0b
import random
import torch
import comet.src.train.atomic_train as train
import comet.src.models.models as models
import comet.src.data.data as data
import comet.utils.utils as utils
import comet.src.train.utils as train_utils
import comet.src.data.config as cfg
from comet.src.data.utils import TextEncoder
from comet.src.train.opt import OpenAIAdam
def main(num):
# Generate configuration files depending on experiment being run
utils.generate_config_files("atomic", num)
# Loads the correct configuration file
config_file = "config/atomic/config_{}.json".format(num)
print(config_file)
# Read config file to option
config = cfg.read_config(cfg.load_config(config_file))
opt, meta = cfg.get_parameters(config)
# Set the random seeds
torch.manual_seed(opt.train.static.seed)
random.seed(opt.train.static.seed)
if config.gpu_mode:
torch.cuda.manual_seed_all(opt.train.static.seed)
# Where to find the data
splits = ["train", "dev", "test"]
opt.train.dynamic.epoch = 0
print("Loading Data")
categories = opt.data.categories
path = "data/atomic/processed/{}/{}.pickle".format(
opt.exp, utils.make_name_string(opt.data))
data_loader = data.make_data_loader(opt, categories)
loaded = data_loader.load_data(path)
print(data_loader.sequences["train"]["total"].size(0))
data_loader.opt = opt
data_loader.batch_size = opt.train.dynamic.bs
print("Done.")
# Initialize text_encoder
text_encoder = TextEncoder(config.encoder_path, config.bpe_path)
special = [data.start_token, data.end_token]
special += ["<{}>".format(cat) for cat in categories]
special += [data.blank_token]
text_encoder.encoder = data_loader.vocab_encoder
text_encoder.decoder = data_loader.vocab_decoder
opt.data.maxe1 = data_loader.max_event
opt.data.maxe2 = data_loader.max_effect
opt.data.maxr = data.atomic_data.num_delimiter_tokens["category"]
n_special = len(special)
n_ctx = opt.data.maxe1 + opt.data.maxe2
n_vocab = len(text_encoder.encoder) + n_ctx
print(data_loader.__dict__.keys())
opt.net.vSize = n_vocab
print("Building Model")
model = models.make_model(
opt, n_vocab, n_ctx, n_special,
load=(opt.net.init=="pt"))
print("Done.")
print("Files will be logged at: {}".format(
utils.make_name(opt, prefix="results/losses/",
is_dir=True, eval_=True)))
data_loader.reset_offsets("train")
# Get number of examples
data.set_max_sizes(data_loader)
if config.gpu_mode:
print("Pushing to GPU: {}".format(config.gpu_index))
cfg.device = config.gpu_index
cfg.do_gpu = True
torch.cuda.set_device(cfg.device)
if config.multigpu:
model = models.multi_gpu(
model, config.gpu_indices).cuda()
else:
model.cuda(cfg.device)
print("Done.")
print("Training")
optimizer = OpenAIAdam(model.parameters(),
lr=opt.train.dynamic.lr,
schedule=opt.train.static.lrsched,
warmup=opt.train.static.lrwarm,
t_total=meta.iterations,
b1=opt.train.static.b1,
b2=opt.train.static.b2,
e=opt.train.static.e,
l2=opt.train.static.l2,
vector_l2=opt.train.static.vl2,
max_grad_norm=opt.train.static.clip)
scorers = ["bleu", "rouge", "cider"]
trainer = train.make_trainer(
opt, meta, data_loader, model, optimizer)
trainer.set_evaluator(opt, model, data_loader)
trainer.run()