Spaces:
Build error
Build error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import comet.src.data.data as data | |
import comet.src.data.config as cfg | |
import comet.src.models.utils as model_utils | |
import comet.src.evaluate.utils as eval_utils | |
import comet.src.train.batch as batch_utils | |
def make_sampler(sampler_type, opt, *args, **kwargs): | |
print("Initializing Greedy Sampler") | |
return GreedySampler(opt, *args, **kwargs) | |
class Sampler(): | |
def __init__(self, opt, data_loader, batch_mode=False): | |
# Token on which to end sampling | |
self.end_token = data_loader.vocab_encoder[data.end_token] | |
self.opt = opt | |
def generate_sequence(self, batch, model): | |
raise | |
class GreedySampler(Sampler): | |
def __init__(self, opt, data_loader, batch_mode=True): | |
super(GreedySampler, self).__init__(opt, data_loader) | |
def append_batch(self, X, next_idx, mask): | |
next_pos = X[:, -1:, 1] + 1 | |
next_x = torch.cat((next_idx, next_pos), -1).unsqueeze(1) | |
next_mask = torch.cat([mask, torch.ones(X.size(0), 1, device=mask.device)], 1) | |
return torch.cat((X, next_x), 1), next_mask | |
def generate_sequence(self, batch, model, data_loader, start_idx, end_len): | |
XMB = batch["sequences"][:, :start_idx] | |
MMB = batch["attention_mask"][:, :start_idx] | |
XMB = model_utils.prepare_position_embeddings( | |
self.opt, data_loader.vocab_encoder, XMB.unsqueeze(-1)) | |
_, lp = model( | |
XMB.unsqueeze(1), sequence_mask=MMB) | |
lm_probs = F.log_softmax(lp, dim=-1) | |
values, indices = lm_probs[:, -1, :].max(dim=-1) | |
seqs = indices.clone().unsqueeze(1) | |
loss = values | |
counts = 1 | |
next_pos = XMB[:, -1:, 1] + 1 | |
next_x = torch.cat((indices.view(-1, 1), next_pos), -1).unsqueeze(1) | |
XMB = torch.cat((XMB, next_x), 1) | |
MMB = torch.cat([MMB, torch.ones(XMB.size(0), 1, device=MMB.device)], 1) | |
# Sample from top k | |
for _ in range(self.opt.eval.smax): | |
_, lp = model( | |
XMB.unsqueeze(1), sequence_mask=MMB) | |
lm_probs = F.log_softmax(lp, dim=-1) | |
# Sample from top k | |
values, next_idx = lm_probs[:, -1, :].max(dim=-1) | |
loss += values | |
counts += 1 | |
next_idx = next_idx.unsqueeze(1) | |
seqs = torch.cat([seqs, next_idx], 1) | |
if (next_idx.item() == self.end_token) or (_ == end_len - 1): | |
break | |
XMB, MMB = self.append_batch(XMB, next_idx, MMB) | |
beams = [] | |
for beam in seqs: | |
beams.append(" ".join("".join( | |
[data_loader.vocab_decoder[tok.item()].replace( | |
'</w>', ' ').replace('\n', '') | |
for tok in beam if tok != self.end_token]).split())) | |
sampling_result = { | |
"sequence": beams[0], | |
"beams": beams, | |
"beam_losses": [loss.item()], | |
"loss": loss.item(), | |
"beam_lengths": [counts], | |
"length": counts | |
} | |
return sampling_result | |
class TopKSampler(Sampler): | |
def __init__(self, opt, data_loader, batch_mode=True): | |
super(TopKSampler, self).__init__(opt, data_loader) | |
def append_batch(self, X, next_idx, mask): | |
next_pos = X[:, -1:, 1] + 1 | |
next_x = torch.cat((next_idx, next_pos), -1).unsqueeze(1) | |
next_mask = torch.cat([mask, torch.ones(X.size(0), 1, device=mask.device)], 1) | |
return torch.cat((X, next_x), 1), next_mask | |
def generate_sequence(self, batch, model, data_loader, start_idx, end_len): | |
# start_idx = context_size_event + 1 | |
# start_idx = max_e1 + max_r | |
# end_idx = context_size_effect - 1 | |
# end_idx = max_e2 | |
XMB = batch["sequences"][:, :start_idx] | |
MMB = batch["attention_mask"][:, :start_idx] | |
XMB = model_utils.prepare_position_embeddings( | |
self.opt, data_loader.vocab_encoder, XMB.unsqueeze(-1)) | |
_, lp = model( | |
XMB.unsqueeze(1), sequence_mask=MMB) | |
lm_probs = F.log_softmax(lp, dim=-1) | |
values, indices = lm_probs[:, -1, :].topk(self.opt.eval.k) | |
seqs = indices.t().clone() | |
losses = - values.view(-1, 1) | |
ended = (seqs == self.end_token).float() | |
counts = (1 - ended) | |
XMB = XMB.repeat(self.opt.eval.k, 1, 1) | |
MMB = MMB.repeat(self.opt.eval.k, 1) | |
next_pos = XMB[:, -1:, 1] + 1 | |
next_x = torch.cat((indices.view(self.opt.eval.k, -1), next_pos), -1).unsqueeze(1) | |
XMB = torch.cat((XMB, next_x), 1) | |
MMB = torch.cat([MMB, torch.ones(XMB.size(0), 1, device=MMB.device)], 1) | |
# Sample from top k | |
for _ in range(end_len): | |
_, lp = model(XMB.unsqueeze(1), sequence_mask=MMB) | |
lm_probs = F.log_softmax(lp, dim=-1) | |
# Sample from top k | |
values, indices = lm_probs[:, -1, :].topk(self.opt.eval.k) | |
choice = torch.multinomial(values.exp(), 1) | |
next_idx = indices.gather(-1, choice) | |
ended = ended + (next_idx == self.end_token).float() * (1 - ended) | |
next_idx = next_idx * (1 - ended).long() + ended.long() * self.end_token | |
counts += (1 - ended) | |
seqs = torch.cat([seqs, next_idx], 1) | |
if ended.sum().item() == self.opt.eval.k: | |
break | |
losses -= values.gather(-1, choice) * (1 - ended) | |
XMB, MMB = self.append_batch(XMB, next_idx, MMB) | |
beams = [] | |
for beam in seqs: | |
beams.append(" ".join("".join( | |
[data_loader.vocab_decoder[tok.item()].replace( | |
'</w>', ' ').replace('\n', '') | |
for tok in beam if tok != self.end_token]).split())) | |
sampling_result = { | |
"sequence": beams[0], | |
"beams": beams, | |
"beam_losses": losses.squeeze().tolist(), | |
"loss": losses[0].item(), | |
"beam_lengths": counts.long().squeeze().tolist(), | |
"length": counts[0].long().item() | |
} | |
return sampling_result | |
class BeamSampler(TopKSampler): | |
def __init__(self, opt, data_loader, batch_mode=True, scorer=None): | |
super(BeamSampler, self).__init__(opt, data_loader, batch_mode) | |
self.kill_mask = torch.ones(opt.eval.bs, opt.eval.bs).to(cfg.device) * 9000 | |
self.kill_mask[:, 0] = 0 | |
def make_batch(self, X): | |
X = np.array(X) | |
assert X.ndim in [1, 2] | |
if X.ndim == 1: | |
X = np.expand_dims(X, axis=0) | |
pos_enc = np.arange(n_vocab + n_special, n_vocab + n_special + X.shape[-1]) | |
pos_enc = np.expand_dims(pos_enc, axis=0) | |
batch = np.stack([X, pos_enc], axis=-1) | |
batch = torch.tensor(batch, dtype=torch.long).to(device) | |
return batch | |
def append_batch(self, X, beam_toks, mask): | |
next_pos = X[:, -1:, 1] + 1 | |
next_x = torch.cat((beam_toks.unsqueeze(1), next_pos), -1).unsqueeze(1) | |
next_mask = torch.cat([mask, torch.ones(X.size(0), 1, device=mask.device)], 1) | |
return torch.cat((X, next_x), 1), next_mask | |
def generate_sequence(self, batch, model, data_loader, start_idx, end_len): | |
# start_idx = context_size_event + 1 | |
# start_idx = max_e1 + max_r | |
# end_idx = context_size_effect - 1 | |
# end_idx = max_e2 | |
XMB = batch["sequences"][:, :start_idx] | |
MMB = batch["attention_mask"][:, :start_idx] | |
XMB = model_utils.prepare_position_embeddings( | |
self.opt, data_loader.vocab_encoder, XMB.unsqueeze(-1)) | |
tokens = [] | |
beam_losses = [] | |
# Beam Search | |
beam_lls, beam_toks, beam_seqs = None, None, None | |
_, lp = model(XMB.unsqueeze(1), sequence_mask=MMB) | |
lm_probs = F.log_softmax(lp, dim=-1) | |
dist = lm_probs[:, -1, :].squeeze() | |
beam_lls, beam_toks = dist.topk(self.opt.eval.bs) | |
beam_losses.append(beam_lls) | |
ended = (beam_toks == self.end_token).float() | |
counts = (2 - ended) | |
beam_toks = beam_toks.unsqueeze(1) | |
beam_seqs = beam_toks.clone() | |
XMB = XMB.repeat(self.opt.eval.bs, 1, 1) | |
MMB = MMB.repeat(self.opt.eval.bs, 1) | |
next_pos = XMB[:, -1:, 1] + 1 | |
next_x = torch.cat((beam_toks, next_pos), -1).unsqueeze(1) | |
XMB = torch.cat((XMB, next_x), 1) | |
MMB = torch.cat([MMB, torch.ones(XMB.size(0), 1, device=MMB.device)], 1) | |
for _ in range(end_len): | |
# Compute distribution for current beam | |
_, lp = model( | |
XMB.unsqueeze(1), sequence_mask=MMB) | |
lm_probs = F.log_softmax(lp, dim=-1) | |
dist = lm_probs[:, -1, :].squeeze() | |
# get hypothesis tokens for distribution | |
hyp_beam_lls, hyp_beam_toks = dist.topk(self.opt.eval.bs) | |
# Compute masks and expand beam | |
expanded_ended = ended.unsqueeze(1).repeat(1, self.opt.eval.bs) | |
hypothesis_mask = expanded_ended * self.kill_mask + (1 - expanded_ended) | |
paper_results = False | |
if paper_results: | |
# Results from paper with slightly buggy beam search | |
current_beam_lls = beam_lls.unsqueeze(1).repeat( | |
1, self.opt.eval.bs).view(self.opt.eval.bs**2) | |
else: | |
# Current beam search implementation | |
current_beam_lls = beam_losses[-1].unsqueeze(1).repeat( | |
1, self.opt.eval.bs).view(self.opt.eval.bs**2) | |
# Compute losses of hypotheses, masking those that have ended | |
hyp_beam_lls = (hyp_beam_lls.view(self.opt.eval.bs**2) * | |
hypothesis_mask.view(-1)) + current_beam_lls | |
# Get normalizer for sequences | |
temp_counts = counts.unsqueeze(1).repeat(1, self.opt.eval.bs).view( | |
self.opt.eval.bs ** 2) | |
# Select best beams with lowest aggregate loss | |
beam_lls, top_beam_idxs = (hyp_beam_lls / temp_counts).topk(self.opt.eval.bs) | |
# Update placements in beam based on selecetion | |
beam_losses = [i.index_select(0, top_beam_idxs // self.opt.eval.bs) | |
for i in beam_losses] | |
ended = ended.index_select(0, top_beam_idxs // self.opt.eval.bs) | |
counts = temp_counts.index_select(0, top_beam_idxs) | |
# Save beam losses | |
beam_losses.append(beam_lls * counts) | |
# Update beam tokens | |
ended_mask = (1 - ended).long() | |
end_replacement = (self.end_token * ended).long() | |
next_toks = hyp_beam_toks.view(-1)[top_beam_idxs] | |
beam_toks = next_toks * ended_mask + end_replacement | |
# Update ended and counts | |
ended = ended + (beam_toks == self.end_token).float() * (1 - ended) | |
counts = counts + (1 - ended) | |
# Update beam sequences | |
beam_seqs = beam_seqs.t().repeat(self.opt.eval.bs, 1).t().contiguous().view( | |
self.opt.eval.bs**2, -1)[top_beam_idxs] | |
beam_seqs = torch.cat((beam_seqs, beam_toks.unsqueeze(1)), dim=1) | |
# I have no idea what's going on but Ari's on point with it | |
XMB = XMB.transpose(0, 1).transpose(1, 2).repeat( | |
self.opt.eval.bs, 1, 1).transpose(2, 1).transpose( | |
1, 0).contiguous().view( | |
self.opt.eval.bs**2, XMB.size(1), XMB.size(2))[top_beam_idxs] | |
XMB, MMB = self.append_batch(XMB, beam_toks, MMB) | |
if (beam_toks == self.end_token).sum().item() == self.opt.eval.bs: | |
break | |
beams = [] | |
for beam in beam_seqs: | |
beams.append(" ".join("".join( | |
[data_loader.vocab_decoder[tok.item()].replace( | |
'</w>', ' ').replace('\n', '') | |
for tok in beam if tok != self.end_token]).split())) | |
sampling_result = { | |
"sequence": beams[0], | |
"beams": beams, | |
"beam_losses": beam_lls.tolist(), | |
"loss": beam_lls[0].item(), | |
"beam_lengths": counts.tolist(), | |
"length": counts[0].item() | |
} | |
return sampling_result | |