File size: 5,656 Bytes
a446b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import json
import copy

import torch

import numpy as np
import contextlib

from distutils.dir_util import mkpath

from tqdm import tqdm


def make_new_tensor_from_list(items, device_num, dtype=torch.float32):
    if device_num is not None:
        device = torch.device("cuda:{}".format(device_num))
    else:
        device = torch.device("cpu")
    return torch.tensor(items, dtype=dtype, device=device)


# is_dir look ast at whether the name we make
# should be a directory or a filename
def make_name(opt, prefix="", eval_=False, is_dir=True, set_epoch=None,
              do_epoch=True):
    string = prefix
    string += "{}-{}".format(opt.dataset, opt.exp)
    string += "/"
    string += "{}-{}-{}".format(opt.trainer, opt.cycle, opt.iters)
    string += "/"
    string += opt.model
    if opt.mle:
        string += "-{}".format(opt.mle)
    string += "/"
    string += make_name_string(opt.data) + "/"

    string += make_name_string(opt.net) + "/"
    string += make_name_string(opt.train.static) + "/"

    if eval_:
        string += make_name_string(opt.eval) + "/"
    # mkpath caches whether a directory has been created
    # In IPython, this can be a problem if the kernel is
    # not reset after a dir is deleted. Trying to recreate
    # that dir will be a problem because mkpath will think
    # the directory already exists
    if not is_dir:
        mkpath(string)
    string += make_name_string(
        opt.train.dynamic, True, do_epoch, set_epoch)
    if is_dir:
        mkpath(string)

    return string


def make_name_string(dict_, final=False, do_epoch=False, set_epoch=None):
    if final:
        if not do_epoch:
            string = "{}_{}_{}".format(
                dict_.lr, dict_.optim, dict_.bs)
        elif set_epoch is not None:
            string = "{}_{}_{}_{}".format(
                dict_.lr, dict_.optim, dict_.bs, set_epoch)
        else:
            string = "{}_{}_{}_{}".format(
                dict_.lr, dict_.optim, dict_.bs, dict_.epoch)

        return string

    string = ""

    for k, v in dict_.items():
        if type(v) == DD:
            continue
        if isinstance(v, list):
            val = "#".join(is_bool(str(vv)) for vv in v)
        else:
            val = is_bool(v)
        if string:
            string += "-"
        string += "{}_{}".format(k, val)

    return string


def is_bool(v):
    if str(v) == "False":
        return "F"
    elif str(v) == "True":
        return "T"
    return v


def generate_config_files(type_, key, name="base", eval_mode=False):
    with open("config/default.json".format(type_), "r") as f:
        base_config = json.load(f)
    with open("config/{}/default.json".format(type_), "r") as f:
        base_config_2 = json.load(f)
    if eval_mode:
        with open("config/{}/eval_changes.json".format(type_), "r") as f:
            changes_by_machine = json.load(f)
    else:
        with open("config/{}/changes.json".format(type_), "r") as f:
            changes_by_machine = json.load(f)

    base_config.update(base_config_2)

    if name in changes_by_machine:
        changes = changes_by_machine[name]
    else:
        changes = changes_by_machine["base"]

    # for param in changes[key]:
    #     base_config[param] = changes[key][param]

    replace_params(base_config, changes[key])

    mkpath("config/{}".format(type_))

    with open("config/{}/config_{}.json".format(type_, key), "w") as f:
        json.dump(base_config, f, indent=4)


def replace_params(base_config, changes):
    for param, value in changes.items():
        if isinstance(value, dict) and param in base_config:
            replace_params(base_config[param], changes[param])
        else:
            base_config[param] = value


def initialize_progress_bar(data_loader_list):
    num_examples = sum([len(tensor) for tensor in
                        data_loader_list.values()])
    return set_progress_bar(num_examples)


def set_progress_bar(num_examples):
    bar = tqdm(total=num_examples)
    bar.update(0)
    return bar


def merge_list_of_dicts(L):
    result = {}
    for d in L:
        result.update(d)
    return result


def return_iterator_by_type(data_type):
    if isinstance(data_type, dict):
        iterator = data_type.items()
    else:
        iterator = enumerate(data_type)
    return iterator


@contextlib.contextmanager
def temp_seed(seed):
    state = np.random.get_state()
    np.random.seed(seed)
    try:
        yield
    finally:
        np.random.set_state(state)


def flatten(outer):
    return [el for inner in outer for el in inner]


def zipped_flatten(outer):
    return [(key, fill, el) for key, fill, inner in outer for el in inner]


def remove_none(l):
    return [e for e in l if e is not None]


# Taken from Jobman 0.1
class DD(dict):
    def __getattr__(self, attr):
        if attr == '__getstate__':
            return super(DD, self).__getstate__
        elif attr == '__setstate__':
            return super(DD, self).__setstate__
        elif attr == '__slots__':
            return super(DD, self).__slots__
        return self[attr]

    def __setattr__(self, attr, value):
        # Safety check to ensure consistent behavior with __getattr__.
        assert attr not in ('__getstate__', '__setstate__', '__slots__')
#         if attr.startswith('__'):
#             return super(DD, self).__setattr__(attr, value)
        self[attr] = value

    def __str__(self):
        return 'DD%s' % dict(self)

    def __repr__(self):
        return str(self)

    def __deepcopy__(self, memo):
        z = DD()
        for k, kv in self.items():
            z[k] = copy.deepcopy(kv, memo)
        return z