File size: 9,235 Bytes
a446b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn.utils.rnn import pad_sequence

class MaskedNLLLoss(nn.Module):

    def __init__(self, weight=None):
        super(MaskedNLLLoss, self).__init__()
        self.weight = weight
        self.loss = nn.NLLLoss(weight=weight,
                               reduction='sum')

    def forward(self, pred, target, mask):
        """
        pred -> batch*seq_len, n_classes
        target -> batch*seq_len
        mask -> batch, seq_len
        """
        mask_ = mask.view(-1,1) # batch*seq_len, 1
        if type(self.weight)==type(None):
            loss = self.loss(pred*mask_, target)/torch.sum(mask)
        else:
            loss = self.loss(pred*mask_, target)\
                            /torch.sum(self.weight[target]*mask_.squeeze())
        return loss


class MaskedMSELoss(nn.Module):

    def __init__(self):
        super(MaskedMSELoss, self).__init__()
        self.loss = nn.MSELoss(reduction='sum')

    def forward(self, pred, target, mask):
        """
        pred -> batch*seq_len
        target -> batch*seq_len
        mask -> batch*seq_len
        """
        loss = self.loss(pred*mask, target)/torch.sum(mask)
        return loss


class UnMaskedWeightedNLLLoss(nn.Module):

    def __init__(self, weight=None):
        super(UnMaskedWeightedNLLLoss, self).__init__()
        self.weight = weight
        self.loss = nn.NLLLoss(weight=weight,
                               reduction='sum')

    def forward(self, pred, target):
        """
        pred -> batch*seq_len, n_classes
        target -> batch*seq_len
        """
        if type(self.weight)==type(None):
            loss = self.loss(pred, target)
        else:
            loss = self.loss(pred, target)\
                            /torch.sum(self.weight[target])
        return loss


class SimpleAttention(nn.Module):

    def __init__(self, input_dim):
        super(SimpleAttention, self).__init__()
        self.input_dim = input_dim
        self.scalar = nn.Linear(self.input_dim,1,bias=False)

    def forward(self, M, x=None):
        """
        M -> (seq_len, batch, vector)
        x -> dummy argument for the compatibility with MatchingAttention
        """
        scale = self.scalar(M) # seq_len, batch, 1
        alpha = F.softmax(scale, dim=0).permute(1,2,0) # batch, 1, seq_len
        attn_pool = torch.bmm(alpha, M.transpose(0,1))[:,0,:] # batch, vector
        return attn_pool, alpha


class MatchingAttention(nn.Module):

    def __init__(self, mem_dim, cand_dim, alpha_dim=None, att_type='general'):
        super(MatchingAttention, self).__init__()
        assert att_type!='concat' or alpha_dim!=None
        assert att_type!='dot' or mem_dim==cand_dim
        self.mem_dim = mem_dim
        self.cand_dim = cand_dim
        self.att_type = att_type
        if att_type=='general':
            self.transform = nn.Linear(cand_dim, mem_dim, bias=False)
        if att_type=='general2':
            self.transform = nn.Linear(cand_dim, mem_dim, bias=True)
            #torch.nn.init.normal_(self.transform.weight,std=0.01)
        elif att_type=='concat':
            self.transform = nn.Linear(cand_dim+mem_dim, alpha_dim, bias=False)
            self.vector_prod = nn.Linear(alpha_dim, 1, bias=False)

    def forward(self, M, x, mask=None):
        """
        M -> (seq_len, batch, mem_dim)
        x -> (batch, cand_dim)
        mask -> (batch, seq_len)
        """
        if type(mask)==type(None):
            mask = torch.ones(M.size(1), M.size(0)).type(M.type())

        if self.att_type=='dot':
            # vector = cand_dim = mem_dim
            M_ = M.permute(1,2,0) # batch, vector, seqlen
            x_ = x.unsqueeze(1) # batch, 1, vector
            alpha = F.softmax(torch.bmm(x_, M_), dim=2) # batch, 1, seqlen
        elif self.att_type=='general':
            M_ = M.permute(1,2,0) # batch, mem_dim, seqlen
            x_ = self.transform(x).unsqueeze(1) # batch, 1, mem_dim
            alpha = F.softmax(torch.bmm(x_, M_), dim=2) # batch, 1, seqlen
        elif self.att_type=='general2':
            M_ = M.permute(1,2,0) # batch, mem_dim, seqlen
            x_ = self.transform(x).unsqueeze(1) # batch, 1, mem_dim
            mask_ = mask.unsqueeze(2).repeat(1, 1, self.mem_dim).transpose(1, 2) # batch, seq_len, mem_dim
            M_ = M_ * mask_
            alpha_ = torch.bmm(x_, M_)*mask.unsqueeze(1)
            alpha_ = torch.tanh(alpha_)
            alpha_ = F.softmax(alpha_, dim=2)
            # alpha_ = F.softmax((torch.bmm(x_, M_))*mask.unsqueeze(1), dim=2) # batch, 1, seqlen
            alpha_masked = alpha_*mask.unsqueeze(1) # batch, 1, seqlen
            alpha_sum = torch.sum(alpha_masked, dim=2, keepdim=True) # batch, 1, 1
            alpha = alpha_masked/alpha_sum # batch, 1, 1 ; normalized
            #import ipdb;ipdb.set_trace()
        else:
            M_ = M.transpose(0,1) # batch, seqlen, mem_dim
            x_ = x.unsqueeze(1).expand(-1,M.size()[0],-1) # batch, seqlen, cand_dim
            M_x_ = torch.cat([M_,x_],2) # batch, seqlen, mem_dim+cand_dim
            mx_a = F.tanh(self.transform(M_x_)) # batch, seqlen, alpha_dim
            alpha = F.softmax(self.vector_prod(mx_a),1).transpose(1,2) # batch, 1, seqlen

        attn_pool = torch.bmm(alpha, M.transpose(0,1))[:,0,:] # batch, mem_dim
        return attn_pool, alpha


class Attention(nn.Module):
    def __init__(self, embed_dim, hidden_dim=None, out_dim=None, n_head=1, score_function='dot_product', dropout=0):
        ''' Attention Mechanism
        :param embed_dim:
        :param hidden_dim:
        :param out_dim:
        :param n_head: num of head (Multi-Head Attention)
        :param score_function: scaled_dot_product / mlp (concat) / bi_linear (general dot)
        :return (?, q_len, out_dim,)
        '''
        super(Attention, self).__init__()
        if hidden_dim is None:
            hidden_dim = embed_dim // n_head
        if out_dim is None:
            out_dim = embed_dim
        self.embed_dim = embed_dim
        self.hidden_dim = hidden_dim
        self.n_head = n_head
        self.score_function = score_function
        self.w_k = nn.Linear(embed_dim, n_head * hidden_dim)
        self.w_q = nn.Linear(embed_dim, n_head * hidden_dim)
        self.proj = nn.Linear(n_head * hidden_dim, out_dim)
        self.dropout = nn.Dropout(dropout)
        if score_function == 'mlp':
            self.weight = nn.Parameter(torch.Tensor(hidden_dim*2))
        elif self.score_function == 'bi_linear':
            self.weight = nn.Parameter(torch.Tensor(hidden_dim, hidden_dim))
        else:  # dot_product / scaled_dot_product
            self.register_parameter('weight', None)
        self.reset_parameters()

    def reset_parameters(self):
        stdv = 1. / math.sqrt(self.hidden_dim)
        if self.weight is not None:
            self.weight.data.uniform_(-stdv, stdv)

    def forward(self, k, q):
        if len(q.shape) == 2:  # q_len missing
            q = torch.unsqueeze(q, dim=1)
        if len(k.shape) == 2:  # k_len missing
            k = torch.unsqueeze(k, dim=1)
        mb_size = k.shape[0]  # ?
        k_len = k.shape[1]
        q_len = q.shape[1]
        # k: (?, k_len, embed_dim,)
        # q: (?, q_len, embed_dim,)
        # kx: (n_head*?, k_len, hidden_dim)
        # qx: (n_head*?, q_len, hidden_dim)
        # score: (n_head*?, q_len, k_len,)
        # output: (?, q_len, out_dim,)
        kx = self.w_k(k).view(mb_size, k_len, self.n_head, self.hidden_dim)
        kx = kx.permute(2, 0, 1, 3).contiguous().view(-1, k_len, self.hidden_dim)
        qx = self.w_q(q).view(mb_size, q_len, self.n_head, self.hidden_dim)
        qx = qx.permute(2, 0, 1, 3).contiguous().view(-1, q_len, self.hidden_dim)
        if self.score_function == 'dot_product':
            kt = kx.permute(0, 2, 1)
            score = torch.bmm(qx, kt)
        elif self.score_function == 'scaled_dot_product':
            kt = kx.permute(0, 2, 1)
            qkt = torch.bmm(qx, kt)
            score = torch.div(qkt, math.sqrt(self.hidden_dim))
        elif self.score_function == 'mlp':
            kxx = torch.unsqueeze(kx, dim=1).expand(-1, q_len, -1, -1)
            qxx = torch.unsqueeze(qx, dim=2).expand(-1, -1, k_len, -1)
            kq = torch.cat((kxx, qxx), dim=-1)  # (n_head*?, q_len, k_len, hidden_dim*2)
            # kq = torch.unsqueeze(kx, dim=1) + torch.unsqueeze(qx, dim=2)
            score = torch.tanh(torch.matmul(kq, self.weight))
        elif self.score_function == 'bi_linear':
            qw = torch.matmul(qx, self.weight)
            kt = kx.permute(0, 2, 1)
            score = torch.bmm(qw, kt)
        else:
            raise RuntimeError('invalid score_function')
        #score = F.softmax(score, dim=-1)
        score = F.softmax(score, dim=0)
        # print (score)
        # print (sum(score))
        output = torch.bmm(score, kx)  # (n_head*?, q_len, hidden_dim)
        output = torch.cat(torch.split(output, mb_size, dim=0), dim=-1)  # (?, q_len, n_head*hidden_dim)
        output = self.proj(output)  # (?, q_len, out_dim)
        output = self.dropout(output)
        return output, score