File size: 14,006 Bytes
a446b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn.utils.rnn import pad_sequence
import numpy as np, itertools, random, copy, math
from model import SimpleAttention, MatchingAttention, Attention

class CommonsenseRNNCell(nn.Module):

    def __init__(self, D_m, D_s, D_g, D_p, D_r, D_i, D_e, listener_state=False,
                            context_attention='simple', D_a=100, dropout=0.5, emo_gru=True):
        super(CommonsenseRNNCell, self).__init__()

        self.D_m = D_m
        self.D_s = D_s
        self.D_g = D_g
        self.D_p = D_p
        self.D_r = D_r
        self.D_i = D_i
        self.D_e = D_e

        # print ('dmsg', D_m, D_s, D_g)
        self.g_cell = nn.GRUCell(D_m+D_p+D_r, D_g)
        self.p_cell = nn.GRUCell(D_s+D_g, D_p)
        self.r_cell = nn.GRUCell(D_m+D_s+D_g, D_r)
        self.i_cell = nn.GRUCell(D_s+D_p, D_i)
        self.e_cell = nn.GRUCell(D_m+D_p+D_r+D_i, D_e)
        
        
        self.emo_gru = emo_gru
        self.listener_state = listener_state
        if listener_state:
            self.pl_cell = nn.GRUCell(D_s+D_g, D_p)
            self.rl_cell = nn.GRUCell(D_m+D_s+D_g, D_r)

        self.dropout = nn.Dropout(dropout)
        
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.dropout3 = nn.Dropout(dropout)
        self.dropout4 = nn.Dropout(dropout)
        self.dropout5 = nn.Dropout(dropout)

        if context_attention=='simple':
            self.attention = SimpleAttention(D_g)
        else:
            self.attention = MatchingAttention(D_g, D_m, D_a, context_attention)

    def _select_parties(self, X, indices):
        q0_sel = []
        for idx, j in zip(indices, X):
            q0_sel.append(j[idx].unsqueeze(0))
        q0_sel = torch.cat(q0_sel,0)
        return q0_sel

    def forward(self, U, x1, x2, x3, o1, o2, qmask, g_hist, q0, r0, i0, e0):
        """
        U -> batch, D_m
        x1, x2, x3, o1, o2 -> batch, D_m
        x1 -> effect on self; x2 -> reaction of self; x3 -> intent of self
        o1 -> effect on others; o2 -> reaction of others
        qmask -> batch, party
        g_hist -> t-1, batch, D_g
        q0 -> batch, party, D_p
        e0 -> batch, self.D_e
        """
        qm_idx = torch.argmax(qmask, 1)
        q0_sel = self._select_parties(q0, qm_idx)
        r0_sel = self._select_parties(r0, qm_idx)

        ## global state ##
        g_ = self.g_cell(torch.cat([U, q0_sel, r0_sel], dim=1),
                torch.zeros(U.size()[0],self.D_g).type(U.type()) if g_hist.size()[0]==0 else
                g_hist[-1])
        # g_ = self.dropout(g_)
        
        ## context ##
        if g_hist.size()[0]==0:
            c_ = torch.zeros(U.size()[0], self.D_g).type(U.type())
            alpha = None
        else:
            c_, alpha = self.attention(g_hist, U)
       
        ## external state ##
        U_r_c_ = torch.cat([U, x2, c_], dim=1).unsqueeze(1).expand(-1, qmask.size()[1],-1)
        # print ('urc', U_r_c_.size())
        # print ('u x2, c', U.size(), x2.size(), c_.size())
        rs_ = self.r_cell(U_r_c_.contiguous().view(-1, self.D_m+self.D_s+self.D_g),
                r0.view(-1, self.D_r)).view(U.size()[0], -1, self.D_r)
        # rs_ = self.dropout(rs_)
        
        ## internal state ##
        es_c_ = torch.cat([x1, c_], dim=1).unsqueeze(1).expand(-1,qmask.size()[1],-1)
        qs_ = self.p_cell(es_c_.contiguous().view(-1, self.D_s+self.D_g),
                q0.view(-1, self.D_p)).view(U.size()[0], -1, self.D_p)
        # qs_ = self.dropout(qs_)
        

        if self.listener_state:
            ## listener external state ##
            U_ = U.unsqueeze(1).expand(-1,qmask.size()[1],-1).contiguous().view(-1,self.D_m)
            er_ = o2.unsqueeze(1).expand(-1, qmask.size()[1], -1).contiguous().view(-1, self.D_s)
            ss_ = self._select_parties(rs_, qm_idx).unsqueeze(1).\
                    expand(-1, qmask.size()[1], -1).contiguous().view(-1, self.D_r)
            U_er_ss_ = torch.cat([U_, er_, ss_], 1)
            rl_ = self.rl_cell(U_er_ss_, r0.view(-1, self.D_r)).view(U.size()[0], -1, self.D_r)
            # rl_ = self.dropout(rl_)
            
            ## listener internal state ##
            es_ = o1.unsqueeze(1).expand(-1, qmask.size()[1], -1).contiguous().view(-1, self.D_s)
            ss_ = self._select_parties(qs_, qm_idx).unsqueeze(1).\
                    expand(-1, qmask.size()[1], -1).contiguous().view(-1, self.D_p)
            es_ss_ = torch.cat([es_, ss_], 1)
            ql_ = self.pl_cell(es_ss_, q0.view(-1, self.D_p)).view(U.size()[0], -1, self.D_p)
            # ql_ = self.dropout(ql_)
            
        else:
            rl_ = r0
            ql_ = q0
            
        qmask_ = qmask.unsqueeze(2)
        q_ = ql_*(1-qmask_) + qs_*qmask_
        r_ = rl_*(1-qmask_) + rs_*qmask_            
        
        ## intent ##        
        i_q_ = torch.cat([x3, self._select_parties(q_, qm_idx)], dim=1).unsqueeze(1).expand(-1, qmask.size()[1], -1)
        is_ = self.i_cell(i_q_.contiguous().view(-1, self.D_s+self.D_p),
                i0.view(-1, self.D_i)).view(U.size()[0], -1, self.D_i)
        # is_ = self.dropout(is_)
        il_ = i0
        i_ = il_*(1-qmask_) + is_*qmask_
        
        ## emotion ##        
        es_ = torch.cat([U, self._select_parties(q_, qm_idx), self._select_parties(r_, qm_idx), 
                         self._select_parties(i_, qm_idx)], dim=1) 
        e0 = torch.zeros(qmask.size()[0], self.D_e).type(U.type()) if e0.size()[0]==0\
                else e0
        
        if self.emo_gru:
            e_ = self.e_cell(es_, e0)
        else:
            e_ = es_    
        
        # e_ = self.dropout(e_)
        g_ = self.dropout1(g_)
        q_ = self.dropout2(q_)
        r_ = self.dropout3(r_)
        i_ = self.dropout4(i_)
        e_ = self.dropout5(e_)
        
        return g_, q_, r_, i_, e_, alpha


class CommonsenseRNN(nn.Module):

    def __init__(self, D_m, D_s, D_g, D_p, D_r, D_i, D_e, listener_state=False,
                            context_attention='simple', D_a=100, dropout=0.5, emo_gru=True):
        super(CommonsenseRNN, self).__init__()

        self.D_m = D_m
        self.D_g = D_g
        self.D_p = D_p
        self.D_r = D_r
        self.D_i = D_i
        self.D_e = D_e
        self.dropout = nn.Dropout(dropout)

        self.dialogue_cell = CommonsenseRNNCell(D_m, D_s, D_g, D_p, D_r, D_i, D_e,
                            listener_state, context_attention, D_a, dropout, emo_gru)

    def forward(self, U, x1, x2, x3, o1, o2, qmask):
        """
        U -> seq_len, batch, D_m
        x1, x2, x3, o1, o2 -> seq_len, batch, D_s
        qmask -> seq_len, batch, party
        """

        g_hist = torch.zeros(0).type(U.type()) # 0-dimensional tensor
        q_ = torch.zeros(qmask.size()[1], qmask.size()[2], self.D_p).type(U.type()) # batch, party, D_p
        r_ = torch.zeros(qmask.size()[1], qmask.size()[2], self.D_r).type(U.type()) # batch, party, D_r
        i_ = torch.zeros(qmask.size()[1], qmask.size()[2], self.D_i).type(U.type()) # batch, party, D_i
        
        e_ = torch.zeros(0).type(U.type()) # batch, D_e
        e = e_

        alpha = []
        for u_, x1_, x2_, x3_, o1_, o2_, qmask_ in zip(U, x1, x2, x3, o1, o2, qmask):
            g_, q_, r_, i_, e_, alpha_ = self.dialogue_cell(u_, x1_, x2_, x3_, o1_, o2_, 
                                                            qmask_, g_hist, q_, r_, i_, e_)
            
            g_hist = torch.cat([g_hist, g_.unsqueeze(0)],0)
            e = torch.cat([e, e_.unsqueeze(0)],0)
            
            if type(alpha_)!=type(None):
                alpha.append(alpha_[:,0,:])

        return e, alpha # seq_len, batch, D_e


class CommonsenseGRUModel(nn.Module):

    def __init__(self, D_m, D_s, D_g, D_p, D_r, D_i, D_e, D_h, D_a=100, n_classes=7, listener_state=False, 
        context_attention='simple', dropout_rec=0.5, dropout=0.1, emo_gru=True, mode1=0, norm=0, residual=False):

        super(CommonsenseGRUModel, self).__init__()

        if mode1 == 0:
            D_x = 4 * D_m
        elif mode1 == 1:
            D_x = 2 * D_m
        else:
            D_x = D_m

        self.mode1 = mode1
        self.norm_strategy = norm
        self.linear_in = nn.Linear(D_x, D_h)
        self.residual = residual

        self.r_weights = nn.Parameter(torch.tensor([0.25, 0.25, 0.25, 0.25]))

        norm_train = True
        self.norm1a = nn.LayerNorm(D_m, elementwise_affine=norm_train)
        self.norm1b = nn.LayerNorm(D_m, elementwise_affine=norm_train)
        self.norm1c = nn.LayerNorm(D_m, elementwise_affine=norm_train)
        self.norm1d = nn.LayerNorm(D_m, elementwise_affine=norm_train)

        self.norm3a = nn.BatchNorm1d(D_m, affine=norm_train)
        self.norm3b = nn.BatchNorm1d(D_m, affine=norm_train)
        self.norm3c = nn.BatchNorm1d(D_m, affine=norm_train)
        self.norm3d = nn.BatchNorm1d(D_m, affine=norm_train)

        self.dropout   = nn.Dropout(dropout)
        self.dropout_rec = nn.Dropout(dropout_rec)
        self.cs_rnn_f = CommonsenseRNN(D_h, D_s, D_g, D_p, D_r, D_i, D_e, listener_state,
                                       context_attention, D_a, dropout_rec, emo_gru)
        self.cs_rnn_r = CommonsenseRNN(D_h, D_s, D_g, D_p, D_r, D_i, D_e, listener_state,
                                       context_attention, D_a, dropout_rec, emo_gru)
        self.sense_gru = nn.GRU(input_size=D_s, hidden_size=D_s//2, num_layers=1, bidirectional=True)
        self.matchatt = MatchingAttention(2*D_e,2*D_e,att_type='general2')
        self.linear     = nn.Linear(2*D_e, D_h)
        self.smax_fc    = nn.Linear(D_h, n_classes)

    def _reverse_seq(self, X, mask):
        """
        X -> seq_len, batch, dim
        mask -> batch, seq_len
        """
        X_ = X.transpose(0,1)
        mask_sum = torch.sum(mask, 1).int()

        xfs = []
        for x, c in zip(X_, mask_sum):
            xf = torch.flip(x[:c], [0])
            xfs.append(xf)
        return pad_sequence(xfs)

    def forward(self, r1, r2, r3, r4, x1, x2, x3, o1, o2, qmask, umask, att2=False, return_hidden=False):
        """
        U -> seq_len, batch, D_m
        qmask -> seq_len, batch, party
        """

        seq_len, batch, feature_dim = r1.size()

        if self.norm_strategy == 1:
            r1 = self.norm1a(r1.transpose(0, 1).reshape(-1, feature_dim)).reshape(-1, seq_len, feature_dim).transpose(1, 0)
            r2 = self.norm1b(r2.transpose(0, 1).reshape(-1, feature_dim)).reshape(-1, seq_len, feature_dim).transpose(1, 0)
            r3 = self.norm1c(r3.transpose(0, 1).reshape(-1, feature_dim)).reshape(-1, seq_len, feature_dim).transpose(1, 0)
            r4 = self.norm1d(r4.transpose(0, 1).reshape(-1, feature_dim)).reshape(-1, seq_len, feature_dim).transpose(1, 0)

        elif self.norm_strategy == 2:
            norm2 = nn.LayerNorm((seq_len, feature_dim), elementwise_affine=False)
            r1 = norm2(r1.transpose(0, 1)).transpose(0, 1)
            r2 = norm2(r2.transpose(0, 1)).transpose(0, 1)
            r3 = norm2(r3.transpose(0, 1)).transpose(0, 1)
            r4 = norm2(r4.transpose(0, 1)).transpose(0, 1)

        elif self.norm_strategy == 3:
            r1 = self.norm3a(r1.transpose(0, 1).reshape(-1, feature_dim)).reshape(-1, seq_len, feature_dim).transpose(1, 0)
            r2 = self.norm3b(r2.transpose(0, 1).reshape(-1, feature_dim)).reshape(-1, seq_len, feature_dim).transpose(1, 0)
            r3 = self.norm3c(r3.transpose(0, 1).reshape(-1, feature_dim)).reshape(-1, seq_len, feature_dim).transpose(1, 0)
            r4 = self.norm3d(r4.transpose(0, 1).reshape(-1, feature_dim)).reshape(-1, seq_len, feature_dim).transpose(1, 0)

        if self.mode1 == 0:
            r = torch.cat([r1, r2, r3, r4], axis=-1)
        elif self.mode1 == 1:
            r = torch.cat([r1, r2], axis=-1)
        elif self.mode1 == 2:
            r = (r1 + r2 + r3 + r4)/4
        elif self.mode1 == 3:
            r = r1
        elif self.mode1 == 4:
            r = r2
        elif self.mode1 == 5:
            r = r3
        elif self.mode1 == 6:
            r = r4
        elif self.mode1 == 7:
            r = self.r_weights[0]*r1 + self.r_weights[1]*r2 + self.r_weights[2]*r3 + self.r_weights[3]*r4
            
        r = self.linear_in(r)
        
        emotions_f, alpha_f = self.cs_rnn_f(r, x1, x2, x3, o1, o2, qmask)
        
        out_sense, _ = self.sense_gru(x1)
        
        rev_r = self._reverse_seq(r, umask)
        rev_x1 = self._reverse_seq(x1, umask)
        rev_x2 = self._reverse_seq(x2, umask)
        rev_x3 = self._reverse_seq(x3, umask)
        rev_o1 = self._reverse_seq(o1, umask)
        rev_o2 = self._reverse_seq(o2, umask)
        rev_qmask = self._reverse_seq(qmask, umask)
        emotions_b, alpha_b = self.cs_rnn_r(rev_r, rev_x1, rev_x2, rev_x3, rev_o1, rev_o2, rev_qmask)
        emotions_b = self._reverse_seq(emotions_b, umask)
        
        emotions = torch.cat([emotions_f,emotions_b],dim=-1)
        emotions = self.dropout_rec(emotions)
        
        alpha, alpha_f, alpha_b = [], [], []
        if att2:
            att_emotions = []
            alpha = []
            for t in emotions:
                att_em, alpha_ = self.matchatt(emotions,t,mask=umask)
                att_emotions.append(att_em.unsqueeze(0))
                alpha.append(alpha_[:,0,:])
            att_emotions = torch.cat(att_emotions,dim=0)
            hidden = F.relu(self.linear(att_emotions))
        else:
            hidden = F.relu(self.linear(emotions))
            
        hidden = self.dropout(hidden)
        
        if self.residual:
            hidden = hidden + r
        
        log_prob = F.log_softmax(self.smax_fc(hidden), 2)

        if return_hidden:
            return hidden, alpha, alpha_f, alpha_b, emotions
        return log_prob, out_sense, alpha, alpha_f, alpha_b, emotions