Spaces:
Build error
Build error
File size: 14,006 Bytes
a446b0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn.utils.rnn import pad_sequence
import numpy as np, itertools, random, copy, math
from model import SimpleAttention, MatchingAttention, Attention
class CommonsenseRNNCell(nn.Module):
def __init__(self, D_m, D_s, D_g, D_p, D_r, D_i, D_e, listener_state=False,
context_attention='simple', D_a=100, dropout=0.5, emo_gru=True):
super(CommonsenseRNNCell, self).__init__()
self.D_m = D_m
self.D_s = D_s
self.D_g = D_g
self.D_p = D_p
self.D_r = D_r
self.D_i = D_i
self.D_e = D_e
# print ('dmsg', D_m, D_s, D_g)
self.g_cell = nn.GRUCell(D_m+D_p+D_r, D_g)
self.p_cell = nn.GRUCell(D_s+D_g, D_p)
self.r_cell = nn.GRUCell(D_m+D_s+D_g, D_r)
self.i_cell = nn.GRUCell(D_s+D_p, D_i)
self.e_cell = nn.GRUCell(D_m+D_p+D_r+D_i, D_e)
self.emo_gru = emo_gru
self.listener_state = listener_state
if listener_state:
self.pl_cell = nn.GRUCell(D_s+D_g, D_p)
self.rl_cell = nn.GRUCell(D_m+D_s+D_g, D_r)
self.dropout = nn.Dropout(dropout)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.dropout4 = nn.Dropout(dropout)
self.dropout5 = nn.Dropout(dropout)
if context_attention=='simple':
self.attention = SimpleAttention(D_g)
else:
self.attention = MatchingAttention(D_g, D_m, D_a, context_attention)
def _select_parties(self, X, indices):
q0_sel = []
for idx, j in zip(indices, X):
q0_sel.append(j[idx].unsqueeze(0))
q0_sel = torch.cat(q0_sel,0)
return q0_sel
def forward(self, U, x1, x2, x3, o1, o2, qmask, g_hist, q0, r0, i0, e0):
"""
U -> batch, D_m
x1, x2, x3, o1, o2 -> batch, D_m
x1 -> effect on self; x2 -> reaction of self; x3 -> intent of self
o1 -> effect on others; o2 -> reaction of others
qmask -> batch, party
g_hist -> t-1, batch, D_g
q0 -> batch, party, D_p
e0 -> batch, self.D_e
"""
qm_idx = torch.argmax(qmask, 1)
q0_sel = self._select_parties(q0, qm_idx)
r0_sel = self._select_parties(r0, qm_idx)
## global state ##
g_ = self.g_cell(torch.cat([U, q0_sel, r0_sel], dim=1),
torch.zeros(U.size()[0],self.D_g).type(U.type()) if g_hist.size()[0]==0 else
g_hist[-1])
# g_ = self.dropout(g_)
## context ##
if g_hist.size()[0]==0:
c_ = torch.zeros(U.size()[0], self.D_g).type(U.type())
alpha = None
else:
c_, alpha = self.attention(g_hist, U)
## external state ##
U_r_c_ = torch.cat([U, x2, c_], dim=1).unsqueeze(1).expand(-1, qmask.size()[1],-1)
# print ('urc', U_r_c_.size())
# print ('u x2, c', U.size(), x2.size(), c_.size())
rs_ = self.r_cell(U_r_c_.contiguous().view(-1, self.D_m+self.D_s+self.D_g),
r0.view(-1, self.D_r)).view(U.size()[0], -1, self.D_r)
# rs_ = self.dropout(rs_)
## internal state ##
es_c_ = torch.cat([x1, c_], dim=1).unsqueeze(1).expand(-1,qmask.size()[1],-1)
qs_ = self.p_cell(es_c_.contiguous().view(-1, self.D_s+self.D_g),
q0.view(-1, self.D_p)).view(U.size()[0], -1, self.D_p)
# qs_ = self.dropout(qs_)
if self.listener_state:
## listener external state ##
U_ = U.unsqueeze(1).expand(-1,qmask.size()[1],-1).contiguous().view(-1,self.D_m)
er_ = o2.unsqueeze(1).expand(-1, qmask.size()[1], -1).contiguous().view(-1, self.D_s)
ss_ = self._select_parties(rs_, qm_idx).unsqueeze(1).\
expand(-1, qmask.size()[1], -1).contiguous().view(-1, self.D_r)
U_er_ss_ = torch.cat([U_, er_, ss_], 1)
rl_ = self.rl_cell(U_er_ss_, r0.view(-1, self.D_r)).view(U.size()[0], -1, self.D_r)
# rl_ = self.dropout(rl_)
## listener internal state ##
es_ = o1.unsqueeze(1).expand(-1, qmask.size()[1], -1).contiguous().view(-1, self.D_s)
ss_ = self._select_parties(qs_, qm_idx).unsqueeze(1).\
expand(-1, qmask.size()[1], -1).contiguous().view(-1, self.D_p)
es_ss_ = torch.cat([es_, ss_], 1)
ql_ = self.pl_cell(es_ss_, q0.view(-1, self.D_p)).view(U.size()[0], -1, self.D_p)
# ql_ = self.dropout(ql_)
else:
rl_ = r0
ql_ = q0
qmask_ = qmask.unsqueeze(2)
q_ = ql_*(1-qmask_) + qs_*qmask_
r_ = rl_*(1-qmask_) + rs_*qmask_
## intent ##
i_q_ = torch.cat([x3, self._select_parties(q_, qm_idx)], dim=1).unsqueeze(1).expand(-1, qmask.size()[1], -1)
is_ = self.i_cell(i_q_.contiguous().view(-1, self.D_s+self.D_p),
i0.view(-1, self.D_i)).view(U.size()[0], -1, self.D_i)
# is_ = self.dropout(is_)
il_ = i0
i_ = il_*(1-qmask_) + is_*qmask_
## emotion ##
es_ = torch.cat([U, self._select_parties(q_, qm_idx), self._select_parties(r_, qm_idx),
self._select_parties(i_, qm_idx)], dim=1)
e0 = torch.zeros(qmask.size()[0], self.D_e).type(U.type()) if e0.size()[0]==0\
else e0
if self.emo_gru:
e_ = self.e_cell(es_, e0)
else:
e_ = es_
# e_ = self.dropout(e_)
g_ = self.dropout1(g_)
q_ = self.dropout2(q_)
r_ = self.dropout3(r_)
i_ = self.dropout4(i_)
e_ = self.dropout5(e_)
return g_, q_, r_, i_, e_, alpha
class CommonsenseRNN(nn.Module):
def __init__(self, D_m, D_s, D_g, D_p, D_r, D_i, D_e, listener_state=False,
context_attention='simple', D_a=100, dropout=0.5, emo_gru=True):
super(CommonsenseRNN, self).__init__()
self.D_m = D_m
self.D_g = D_g
self.D_p = D_p
self.D_r = D_r
self.D_i = D_i
self.D_e = D_e
self.dropout = nn.Dropout(dropout)
self.dialogue_cell = CommonsenseRNNCell(D_m, D_s, D_g, D_p, D_r, D_i, D_e,
listener_state, context_attention, D_a, dropout, emo_gru)
def forward(self, U, x1, x2, x3, o1, o2, qmask):
"""
U -> seq_len, batch, D_m
x1, x2, x3, o1, o2 -> seq_len, batch, D_s
qmask -> seq_len, batch, party
"""
g_hist = torch.zeros(0).type(U.type()) # 0-dimensional tensor
q_ = torch.zeros(qmask.size()[1], qmask.size()[2], self.D_p).type(U.type()) # batch, party, D_p
r_ = torch.zeros(qmask.size()[1], qmask.size()[2], self.D_r).type(U.type()) # batch, party, D_r
i_ = torch.zeros(qmask.size()[1], qmask.size()[2], self.D_i).type(U.type()) # batch, party, D_i
e_ = torch.zeros(0).type(U.type()) # batch, D_e
e = e_
alpha = []
for u_, x1_, x2_, x3_, o1_, o2_, qmask_ in zip(U, x1, x2, x3, o1, o2, qmask):
g_, q_, r_, i_, e_, alpha_ = self.dialogue_cell(u_, x1_, x2_, x3_, o1_, o2_,
qmask_, g_hist, q_, r_, i_, e_)
g_hist = torch.cat([g_hist, g_.unsqueeze(0)],0)
e = torch.cat([e, e_.unsqueeze(0)],0)
if type(alpha_)!=type(None):
alpha.append(alpha_[:,0,:])
return e, alpha # seq_len, batch, D_e
class CommonsenseGRUModel(nn.Module):
def __init__(self, D_m, D_s, D_g, D_p, D_r, D_i, D_e, D_h, D_a=100, n_classes=7, listener_state=False,
context_attention='simple', dropout_rec=0.5, dropout=0.1, emo_gru=True, mode1=0, norm=0, residual=False):
super(CommonsenseGRUModel, self).__init__()
if mode1 == 0:
D_x = 4 * D_m
elif mode1 == 1:
D_x = 2 * D_m
else:
D_x = D_m
self.mode1 = mode1
self.norm_strategy = norm
self.linear_in = nn.Linear(D_x, D_h)
self.residual = residual
self.r_weights = nn.Parameter(torch.tensor([0.25, 0.25, 0.25, 0.25]))
norm_train = True
self.norm1a = nn.LayerNorm(D_m, elementwise_affine=norm_train)
self.norm1b = nn.LayerNorm(D_m, elementwise_affine=norm_train)
self.norm1c = nn.LayerNorm(D_m, elementwise_affine=norm_train)
self.norm1d = nn.LayerNorm(D_m, elementwise_affine=norm_train)
self.norm3a = nn.BatchNorm1d(D_m, affine=norm_train)
self.norm3b = nn.BatchNorm1d(D_m, affine=norm_train)
self.norm3c = nn.BatchNorm1d(D_m, affine=norm_train)
self.norm3d = nn.BatchNorm1d(D_m, affine=norm_train)
self.dropout = nn.Dropout(dropout)
self.dropout_rec = nn.Dropout(dropout_rec)
self.cs_rnn_f = CommonsenseRNN(D_h, D_s, D_g, D_p, D_r, D_i, D_e, listener_state,
context_attention, D_a, dropout_rec, emo_gru)
self.cs_rnn_r = CommonsenseRNN(D_h, D_s, D_g, D_p, D_r, D_i, D_e, listener_state,
context_attention, D_a, dropout_rec, emo_gru)
self.sense_gru = nn.GRU(input_size=D_s, hidden_size=D_s//2, num_layers=1, bidirectional=True)
self.matchatt = MatchingAttention(2*D_e,2*D_e,att_type='general2')
self.linear = nn.Linear(2*D_e, D_h)
self.smax_fc = nn.Linear(D_h, n_classes)
def _reverse_seq(self, X, mask):
"""
X -> seq_len, batch, dim
mask -> batch, seq_len
"""
X_ = X.transpose(0,1)
mask_sum = torch.sum(mask, 1).int()
xfs = []
for x, c in zip(X_, mask_sum):
xf = torch.flip(x[:c], [0])
xfs.append(xf)
return pad_sequence(xfs)
def forward(self, r1, r2, r3, r4, x1, x2, x3, o1, o2, qmask, umask, att2=False, return_hidden=False):
"""
U -> seq_len, batch, D_m
qmask -> seq_len, batch, party
"""
seq_len, batch, feature_dim = r1.size()
if self.norm_strategy == 1:
r1 = self.norm1a(r1.transpose(0, 1).reshape(-1, feature_dim)).reshape(-1, seq_len, feature_dim).transpose(1, 0)
r2 = self.norm1b(r2.transpose(0, 1).reshape(-1, feature_dim)).reshape(-1, seq_len, feature_dim).transpose(1, 0)
r3 = self.norm1c(r3.transpose(0, 1).reshape(-1, feature_dim)).reshape(-1, seq_len, feature_dim).transpose(1, 0)
r4 = self.norm1d(r4.transpose(0, 1).reshape(-1, feature_dim)).reshape(-1, seq_len, feature_dim).transpose(1, 0)
elif self.norm_strategy == 2:
norm2 = nn.LayerNorm((seq_len, feature_dim), elementwise_affine=False)
r1 = norm2(r1.transpose(0, 1)).transpose(0, 1)
r2 = norm2(r2.transpose(0, 1)).transpose(0, 1)
r3 = norm2(r3.transpose(0, 1)).transpose(0, 1)
r4 = norm2(r4.transpose(0, 1)).transpose(0, 1)
elif self.norm_strategy == 3:
r1 = self.norm3a(r1.transpose(0, 1).reshape(-1, feature_dim)).reshape(-1, seq_len, feature_dim).transpose(1, 0)
r2 = self.norm3b(r2.transpose(0, 1).reshape(-1, feature_dim)).reshape(-1, seq_len, feature_dim).transpose(1, 0)
r3 = self.norm3c(r3.transpose(0, 1).reshape(-1, feature_dim)).reshape(-1, seq_len, feature_dim).transpose(1, 0)
r4 = self.norm3d(r4.transpose(0, 1).reshape(-1, feature_dim)).reshape(-1, seq_len, feature_dim).transpose(1, 0)
if self.mode1 == 0:
r = torch.cat([r1, r2, r3, r4], axis=-1)
elif self.mode1 == 1:
r = torch.cat([r1, r2], axis=-1)
elif self.mode1 == 2:
r = (r1 + r2 + r3 + r4)/4
elif self.mode1 == 3:
r = r1
elif self.mode1 == 4:
r = r2
elif self.mode1 == 5:
r = r3
elif self.mode1 == 6:
r = r4
elif self.mode1 == 7:
r = self.r_weights[0]*r1 + self.r_weights[1]*r2 + self.r_weights[2]*r3 + self.r_weights[3]*r4
r = self.linear_in(r)
emotions_f, alpha_f = self.cs_rnn_f(r, x1, x2, x3, o1, o2, qmask)
out_sense, _ = self.sense_gru(x1)
rev_r = self._reverse_seq(r, umask)
rev_x1 = self._reverse_seq(x1, umask)
rev_x2 = self._reverse_seq(x2, umask)
rev_x3 = self._reverse_seq(x3, umask)
rev_o1 = self._reverse_seq(o1, umask)
rev_o2 = self._reverse_seq(o2, umask)
rev_qmask = self._reverse_seq(qmask, umask)
emotions_b, alpha_b = self.cs_rnn_r(rev_r, rev_x1, rev_x2, rev_x3, rev_o1, rev_o2, rev_qmask)
emotions_b = self._reverse_seq(emotions_b, umask)
emotions = torch.cat([emotions_f,emotions_b],dim=-1)
emotions = self.dropout_rec(emotions)
alpha, alpha_f, alpha_b = [], [], []
if att2:
att_emotions = []
alpha = []
for t in emotions:
att_em, alpha_ = self.matchatt(emotions,t,mask=umask)
att_emotions.append(att_em.unsqueeze(0))
alpha.append(alpha_[:,0,:])
att_emotions = torch.cat(att_emotions,dim=0)
hidden = F.relu(self.linear(att_emotions))
else:
hidden = F.relu(self.linear(emotions))
hidden = self.dropout(hidden)
if self.residual:
hidden = hidden + r
log_prob = F.log_softmax(self.smax_fc(hidden), 2)
if return_hidden:
return hidden, alpha, alpha_f, alpha_b, emotions
return log_prob, out_sense, alpha, alpha_f, alpha_b, emotions
|