Spaces:
Build error
Build error
File size: 12,228 Bytes
a446b0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import comet.src.data.data as data
import comet.src.data.config as cfg
import comet.src.models.utils as model_utils
import comet.src.evaluate.utils as eval_utils
import comet.src.train.batch as batch_utils
def make_sampler(sampler_type, opt, *args, **kwargs):
print("Initializing Greedy Sampler")
return GreedySampler(opt, *args, **kwargs)
class Sampler():
def __init__(self, opt, data_loader, batch_mode=False):
# Token on which to end sampling
self.end_token = data_loader.vocab_encoder[data.end_token]
self.opt = opt
def generate_sequence(self, batch, model):
raise
class GreedySampler(Sampler):
def __init__(self, opt, data_loader, batch_mode=True):
super(GreedySampler, self).__init__(opt, data_loader)
def append_batch(self, X, next_idx, mask):
next_pos = X[:, -1:, 1] + 1
next_x = torch.cat((next_idx, next_pos), -1).unsqueeze(1)
next_mask = torch.cat([mask, torch.ones(X.size(0), 1, device=mask.device)], 1)
return torch.cat((X, next_x), 1), next_mask
def generate_sequence(self, batch, model, data_loader, start_idx, end_len):
XMB = batch["sequences"][:, :start_idx]
MMB = batch["attention_mask"][:, :start_idx]
XMB = model_utils.prepare_position_embeddings(
self.opt, data_loader.vocab_encoder, XMB.unsqueeze(-1))
_, lp = model(
XMB.unsqueeze(1), sequence_mask=MMB)
lm_probs = F.log_softmax(lp, dim=-1)
values, indices = lm_probs[:, -1, :].max(dim=-1)
seqs = indices.clone().unsqueeze(1)
loss = values
counts = 1
next_pos = XMB[:, -1:, 1] + 1
next_x = torch.cat((indices.view(-1, 1), next_pos), -1).unsqueeze(1)
XMB = torch.cat((XMB, next_x), 1)
MMB = torch.cat([MMB, torch.ones(XMB.size(0), 1, device=MMB.device)], 1)
# Sample from top k
for _ in range(self.opt.eval.smax):
_, lp = model(
XMB.unsqueeze(1), sequence_mask=MMB)
lm_probs = F.log_softmax(lp, dim=-1)
# Sample from top k
values, next_idx = lm_probs[:, -1, :].max(dim=-1)
loss += values
counts += 1
next_idx = next_idx.unsqueeze(1)
seqs = torch.cat([seqs, next_idx], 1)
if (next_idx.item() == self.end_token) or (_ == end_len - 1):
break
XMB, MMB = self.append_batch(XMB, next_idx, MMB)
beams = []
for beam in seqs:
beams.append(" ".join("".join(
[data_loader.vocab_decoder[tok.item()].replace(
'</w>', ' ').replace('\n', '')
for tok in beam if tok != self.end_token]).split()))
sampling_result = {
"sequence": beams[0],
"beams": beams,
"beam_losses": [loss.item()],
"loss": loss.item(),
"beam_lengths": [counts],
"length": counts
}
return sampling_result
class TopKSampler(Sampler):
def __init__(self, opt, data_loader, batch_mode=True):
super(TopKSampler, self).__init__(opt, data_loader)
def append_batch(self, X, next_idx, mask):
next_pos = X[:, -1:, 1] + 1
next_x = torch.cat((next_idx, next_pos), -1).unsqueeze(1)
next_mask = torch.cat([mask, torch.ones(X.size(0), 1, device=mask.device)], 1)
return torch.cat((X, next_x), 1), next_mask
def generate_sequence(self, batch, model, data_loader, start_idx, end_len):
# start_idx = context_size_event + 1
# start_idx = max_e1 + max_r
# end_idx = context_size_effect - 1
# end_idx = max_e2
XMB = batch["sequences"][:, :start_idx]
MMB = batch["attention_mask"][:, :start_idx]
XMB = model_utils.prepare_position_embeddings(
self.opt, data_loader.vocab_encoder, XMB.unsqueeze(-1))
_, lp = model(
XMB.unsqueeze(1), sequence_mask=MMB)
lm_probs = F.log_softmax(lp, dim=-1)
values, indices = lm_probs[:, -1, :].topk(self.opt.eval.k)
seqs = indices.t().clone()
losses = - values.view(-1, 1)
ended = (seqs == self.end_token).float()
counts = (1 - ended)
XMB = XMB.repeat(self.opt.eval.k, 1, 1)
MMB = MMB.repeat(self.opt.eval.k, 1)
next_pos = XMB[:, -1:, 1] + 1
next_x = torch.cat((indices.view(self.opt.eval.k, -1), next_pos), -1).unsqueeze(1)
XMB = torch.cat((XMB, next_x), 1)
MMB = torch.cat([MMB, torch.ones(XMB.size(0), 1, device=MMB.device)], 1)
# Sample from top k
for _ in range(end_len):
_, lp = model(XMB.unsqueeze(1), sequence_mask=MMB)
lm_probs = F.log_softmax(lp, dim=-1)
# Sample from top k
values, indices = lm_probs[:, -1, :].topk(self.opt.eval.k)
choice = torch.multinomial(values.exp(), 1)
next_idx = indices.gather(-1, choice)
ended = ended + (next_idx == self.end_token).float() * (1 - ended)
next_idx = next_idx * (1 - ended).long() + ended.long() * self.end_token
counts += (1 - ended)
seqs = torch.cat([seqs, next_idx], 1)
if ended.sum().item() == self.opt.eval.k:
break
losses -= values.gather(-1, choice) * (1 - ended)
XMB, MMB = self.append_batch(XMB, next_idx, MMB)
beams = []
for beam in seqs:
beams.append(" ".join("".join(
[data_loader.vocab_decoder[tok.item()].replace(
'</w>', ' ').replace('\n', '')
for tok in beam if tok != self.end_token]).split()))
sampling_result = {
"sequence": beams[0],
"beams": beams,
"beam_losses": losses.squeeze().tolist(),
"loss": losses[0].item(),
"beam_lengths": counts.long().squeeze().tolist(),
"length": counts[0].long().item()
}
return sampling_result
class BeamSampler(TopKSampler):
def __init__(self, opt, data_loader, batch_mode=True, scorer=None):
super(BeamSampler, self).__init__(opt, data_loader, batch_mode)
self.kill_mask = torch.ones(opt.eval.bs, opt.eval.bs).to(cfg.device) * 9000
self.kill_mask[:, 0] = 0
def make_batch(self, X):
X = np.array(X)
assert X.ndim in [1, 2]
if X.ndim == 1:
X = np.expand_dims(X, axis=0)
pos_enc = np.arange(n_vocab + n_special, n_vocab + n_special + X.shape[-1])
pos_enc = np.expand_dims(pos_enc, axis=0)
batch = np.stack([X, pos_enc], axis=-1)
batch = torch.tensor(batch, dtype=torch.long).to(device)
return batch
def append_batch(self, X, beam_toks, mask):
next_pos = X[:, -1:, 1] + 1
next_x = torch.cat((beam_toks.unsqueeze(1), next_pos), -1).unsqueeze(1)
next_mask = torch.cat([mask, torch.ones(X.size(0), 1, device=mask.device)], 1)
return torch.cat((X, next_x), 1), next_mask
def generate_sequence(self, batch, model, data_loader, start_idx, end_len):
# start_idx = context_size_event + 1
# start_idx = max_e1 + max_r
# end_idx = context_size_effect - 1
# end_idx = max_e2
XMB = batch["sequences"][:, :start_idx]
MMB = batch["attention_mask"][:, :start_idx]
XMB = model_utils.prepare_position_embeddings(
self.opt, data_loader.vocab_encoder, XMB.unsqueeze(-1))
tokens = []
beam_losses = []
# Beam Search
beam_lls, beam_toks, beam_seqs = None, None, None
_, lp = model(XMB.unsqueeze(1), sequence_mask=MMB)
lm_probs = F.log_softmax(lp, dim=-1)
dist = lm_probs[:, -1, :].squeeze()
beam_lls, beam_toks = dist.topk(self.opt.eval.bs)
beam_losses.append(beam_lls)
ended = (beam_toks == self.end_token).float()
counts = (2 - ended)
beam_toks = beam_toks.unsqueeze(1)
beam_seqs = beam_toks.clone()
XMB = XMB.repeat(self.opt.eval.bs, 1, 1)
MMB = MMB.repeat(self.opt.eval.bs, 1)
next_pos = XMB[:, -1:, 1] + 1
next_x = torch.cat((beam_toks, next_pos), -1).unsqueeze(1)
XMB = torch.cat((XMB, next_x), 1)
MMB = torch.cat([MMB, torch.ones(XMB.size(0), 1, device=MMB.device)], 1)
for _ in range(end_len):
# Compute distribution for current beam
_, lp = model(
XMB.unsqueeze(1), sequence_mask=MMB)
lm_probs = F.log_softmax(lp, dim=-1)
dist = lm_probs[:, -1, :].squeeze()
# get hypothesis tokens for distribution
hyp_beam_lls, hyp_beam_toks = dist.topk(self.opt.eval.bs)
# Compute masks and expand beam
expanded_ended = ended.unsqueeze(1).repeat(1, self.opt.eval.bs)
hypothesis_mask = expanded_ended * self.kill_mask + (1 - expanded_ended)
paper_results = False
if paper_results:
# Results from paper with slightly buggy beam search
current_beam_lls = beam_lls.unsqueeze(1).repeat(
1, self.opt.eval.bs).view(self.opt.eval.bs**2)
else:
# Current beam search implementation
current_beam_lls = beam_losses[-1].unsqueeze(1).repeat(
1, self.opt.eval.bs).view(self.opt.eval.bs**2)
# Compute losses of hypotheses, masking those that have ended
hyp_beam_lls = (hyp_beam_lls.view(self.opt.eval.bs**2) *
hypothesis_mask.view(-1)) + current_beam_lls
# Get normalizer for sequences
temp_counts = counts.unsqueeze(1).repeat(1, self.opt.eval.bs).view(
self.opt.eval.bs ** 2)
# Select best beams with lowest aggregate loss
beam_lls, top_beam_idxs = (hyp_beam_lls / temp_counts).topk(self.opt.eval.bs)
# Update placements in beam based on selecetion
beam_losses = [i.index_select(0, top_beam_idxs // self.opt.eval.bs)
for i in beam_losses]
ended = ended.index_select(0, top_beam_idxs // self.opt.eval.bs)
counts = temp_counts.index_select(0, top_beam_idxs)
# Save beam losses
beam_losses.append(beam_lls * counts)
# Update beam tokens
ended_mask = (1 - ended).long()
end_replacement = (self.end_token * ended).long()
next_toks = hyp_beam_toks.view(-1)[top_beam_idxs]
beam_toks = next_toks * ended_mask + end_replacement
# Update ended and counts
ended = ended + (beam_toks == self.end_token).float() * (1 - ended)
counts = counts + (1 - ended)
# Update beam sequences
beam_seqs = beam_seqs.t().repeat(self.opt.eval.bs, 1).t().contiguous().view(
self.opt.eval.bs**2, -1)[top_beam_idxs]
beam_seqs = torch.cat((beam_seqs, beam_toks.unsqueeze(1)), dim=1)
# I have no idea what's going on but Ari's on point with it
XMB = XMB.transpose(0, 1).transpose(1, 2).repeat(
self.opt.eval.bs, 1, 1).transpose(2, 1).transpose(
1, 0).contiguous().view(
self.opt.eval.bs**2, XMB.size(1), XMB.size(2))[top_beam_idxs]
XMB, MMB = self.append_batch(XMB, beam_toks, MMB)
if (beam_toks == self.end_token).sum().item() == self.opt.eval.bs:
break
beams = []
for beam in beam_seqs:
beams.append(" ".join("".join(
[data_loader.vocab_decoder[tok.item()].replace(
'</w>', ' ').replace('\n', '')
for tok in beam if tok != self.end_token]).split()))
sampling_result = {
"sequence": beams[0],
"beams": beams,
"beam_losses": beam_lls.tolist(),
"loss": beam_lls[0].item(),
"beam_lengths": counts.tolist(),
"length": counts[0].item()
}
return sampling_result
|