File size: 10,344 Bytes
a446b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import comet.utils.utils as utils
import comet.src.data.utils as data_utils
import comet.src.data.config as cfg

import pandas
import json
import random
import math
import torch

from tqdm import tqdm


def map_name(name):
    if name == "train":
        return "trn"
    elif name == "test":
        return "tst"
    else:
        return "dev"


class DataLoader(object):
    def __init__(self, opt):
        self.data = {}
        self.data["train"] = {}
        self.data["dev"] = {}
        self.data["test"] = {}

        self.sequences = {}
        self.sequences["train"] = {}
        self.sequences["dev"] = {}
        self.sequences["test"] = {}

        self.masks = {}
        self.masks["train"] = {}
        self.masks["dev"] = {}
        self.masks["test"] = {}

        self.offsets = {}
        self.offsets["train"] = {}
        self.offsets["dev"] = {}
        self.offsets["test"] = {}

    def offset_summary(self, split):
        return self.offsets[split]["total"]


def do_take_partial_dataset(data_opts):
    if data_opts.get("kr", None) is None:
        return False
    if data_opts.kr == 1:
        return False
    return True


def select_partial_dataset(data_opts, data):
    num_selections = math.ceil(data_opts.kr * len(data))
    return random.sample(data, num_selections)


class GenerationDataLoader(DataLoader):
    def __init__(self, opt, categories):
        super(GenerationDataLoader, self).__init__(opt)

        self.categories = categories
        self.opt = opt

        for split in self.data:
            self.data[split] = {"total": []}
            self.offsets[split] = {"total": 0}

        self.vocab_encoder = None
        self.vocab_decoder = None
        self.special_chars = None
        self.max_event = None
        self.max_effect = None

    def load_data(self, path):
        if ".pickle" in path:
            print("Loading data from: {}".format(path))
            data_utils.load_existing_data_loader(self, path)

            return True

        for split in self.data:
            file_name = "v4_atomic_{}.csv".format(map_name(split))

            df = pandas.read_csv("{}/{}".format(path, file_name), index_col=0)
            df.iloc[:, :9] = df.iloc[:, :9].apply(
                lambda col: col.apply(json.loads))

            for cat in self.categories:
                attr = df[cat]
                self.data[split]["total"] += utils.zipped_flatten(zip(
                    attr.index, ["<{}>".format(cat)] * len(attr), attr.values))

        if do_take_partial_dataset(self.opt.data):
            self.data["train"]["total"] = select_partial_dataset(
                self.opt.data, self.data["train"]["total"])

        return False

    def make_tensors(self, text_encoder, special,
                     splits=["train", "dev", "test"], test=False):
        self.vocab_encoder = text_encoder.encoder
        self.vocab_decoder = text_encoder.decoder
        self.special_chars = special

        sequences = {}
        for split in splits:
            sequences[split] = get_generation_sequences(
                self.opt, self.data, split, text_encoder, test)

            self.masks[split]["total"] = [(len(i[0]), len(i[1])) for
                                          i in sequences[split]]

        self.max_event = max([max([l[0] for l in self.masks[split]["total"]])
                              for split in self.masks])
        self.max_effect = max([max([l[1] for l in self.masks[split]["total"]])
                               for split in self.masks])

        print(self.max_event)
        print(self.max_effect)

        for split in splits:
            num_elements = len(sequences[split])
            self.sequences[split]["total"] = torch.LongTensor(
                num_elements, self.max_event + self.max_effect).fill_(0)

            for i, seq in enumerate(sequences[split]):
                # print(self.sequences[split]["total"][i, :len(seq[0])].size())
                # print(torch.FloatTensor(seq[0]).size())
                self.sequences[split]["total"][i, :len(seq[0])] = \
                    torch.LongTensor(seq[0])
                self.sequences[split]["total"][i, self.max_event:self.max_event + len(seq[1])] = \
                    torch.LongTensor(seq[1])

    def sample_batch(self, split, bs, idxs=None):
        offset = self.offsets[split]["total"]

        batch = {}

        # Decided not to reduce computation on here because it's all parallel
        # anyway and we don't want to run out of memory in cases where we
        # don't see the longest version quickly enough

        if idxs:
            seqs = self.sequences[split]["total"].index_select(
                0, torch.LongTensor(idxs).to(
                    self.sequences[split]["total"].device))
        else:
            seqs = self.sequences[split]["total"][offset:offset + bs]
        batch["sequences"] = seqs.to(cfg.device)
        batch["attention_mask"] = make_attention_mask(seqs)
        batch["loss_mask"] = make_loss_mask(
            seqs, self.max_event, 1)
        batch["key"] = ("total", offset, offset + bs)

        offset += seqs.size(0)

        self.offsets[split]["total"] = offset

        if split == "train" and offset + bs > len(self.sequences[split]["total"]):
            return batch, True
        elif offset >= len(self.sequences[split]["total"]):
            return batch, True
        else:
            return batch, False

    def reset_offsets(self, splits=["train", "test", "dev"],
                      shuffle=True, keys=None):
        if isinstance(splits, str):
            splits = [splits]

        for split in splits:
            if keys is None:
                keys = ["total"]

            for key in keys:
                self.offsets[split][key] = 0

            if shuffle:
                self.shuffle_sequences(split, keys)

    def shuffle_sequences(self, split="train", keys=None):
        if keys is None:
            # print(type(self.data))
            # print(type(self.data.keys()))
            keys = self.data[split].keys()

        for key in keys:
            idxs = list(range(len(self.data[split][key])))

            random.shuffle(idxs)

            self.sequences[split][key] = \
                self.sequences[split][key].index_select(
                    0, torch.LongTensor(idxs))

            temp = [self.data[split][key][i] for i in idxs]
            self.data[split][key] = temp
            temp = [self.masks[split][key][i] for i in idxs]
            self.masks[split][key] = temp


def prune_data_for_evaluation(data_loader, categories, split):
    indices = []
    for i, example in enumerate(data_loader.data[split]["total"]):
        if example[1] in categories:
            indices.append(i)

    data_loader.masks[split]["total"] = [data_loader.masks[split]["total"][i]
                                         for i in indices]
    data_loader.sequences[split]["total"] = \
        data_loader.sequences[split]["total"].index_select(
            0, torch.LongTensor(indices))
    data_loader.data[split]["total"] = [data_loader.data[split]["total"][i]
                                        for i in indices]


def make_attention_mask(sequences):
    return (sequences != 0).float().to(cfg.device)


def make_loss_mask(sequences, max_event, num_delim_tokens):
    # print(num_delim_tokens)
    # print(sequences.size())
    mask = (sequences != 0).float()
    mask[:, :max_event + num_delim_tokens] = 0
    return mask[:, 1:].to(cfg.device)


def find_underscore_length(seq):
    start = "_"

    while start in seq:
        start += "_"
    return start[:-1]


def handle_underscores(suffix, text_encoder, prefix=False):
    encoder = text_encoder.encoder
    if prefix:
        tok = "___"
    else:
        tok = find_underscore_length(suffix)

    suffix_parts = [i.strip() for i in suffix.split("{}".format(tok))]
    to_flatten = []
    for i, part in enumerate(suffix_parts):
        if part:
            to_flatten.append(text_encoder.encode([part], verbose=False)[0])

            if i != len(suffix_parts) - 1 and suffix_parts[i+1]:
                to_flatten.append([encoder["<blank>"]])
        else:
            to_flatten.append([encoder["<blank>"]])

    final_suffix = utils.flatten(to_flatten)

    return final_suffix


def get_generation_sequences(opt, data, split, text_encoder, test):
    sequences = []
    count = 0

    final_prefix = None
    final_suffix = None

    for prefix, category, suffix in tqdm(data[split]["total"]):
        final_prefix, final_suffix = do_example(
            text_encoder, prefix, suffix, True, True)
        # if do_prefix:
        #     if "___" in prefix:
        #         final_prefix = handle_underscores(prefix, text_encoder, True)
        #     else:
        #         final_prefix = text_encoder.encode([prefix], verbose=False)[0]
        # if do_suffix:
        #     if "_" in suffix:
        #         final_suffix = handle_underscores(suffix, text_encoder)
        #     else:
        #         final_suffix = text_encoder.encode([suffix], verbose=False)[0]

        final = compile_final_sequence(
            opt, final_prefix, final_suffix, category, text_encoder)

        sequences.append(final)

        count += 1

        if count > 10 and test:
            break

    return sequences



def do_example(text_encoder, prefix, suffix, do_prefix, do_suffix):
    final_prefix = None
    final_suffix = None

    if do_prefix:
        if "___" in prefix:
            final_prefix = handle_underscores(prefix, text_encoder, True)
        else:
            final_prefix = text_encoder.encode([prefix], verbose=False)[0]
    if do_suffix:
        if "_" in suffix:
            final_suffix = handle_underscores(suffix, text_encoder)
        else:
            final_suffix = text_encoder.encode([suffix], verbose=False)[0]

    return final_prefix, final_suffix


def compile_final_sequence(opt, final_prefix, final_suffix, category, text_encoder):
    final = []

    final.append(final_prefix)
    final.append(
        [text_encoder.encoder[category]]
        + final_suffix)

    final[-1].append(text_encoder.encoder["<END>"])

    return final


num_delimiter_tokens = {
    "category": 1,
    "hierarchy": 3,
    "hierarchy+label": 4,
    "category+hierarchy": 4,
    "category+hierarchy+label": 5
}