File size: 7,073 Bytes
a446b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import torch
import torch.nn as nn
import torch.nn.functional as F

import comet.src.data.config as cfg
import comet.src.data.data as data
import comet.src.train.utils as train_utils
import comet.src.train.batch as batch

import comet.src.evaluate.evaluate as evaluate
import comet.src.evaluate.generate as gen
import comet.src.evaluate.sampler as sampling

import comet.utils.utils as utils

from tensorboardX import SummaryWriter


class Trainer(object):
    def __init__(self, opt, meta, data_loader, model, optimizer):
        self.optimizer = optimizer

        self.model = model

        if opt.trainer == "epoch":
            self.epochs = meta.epochs
        self.data_loader = data_loader
        self.opt = opt

        self.losses = {"dev": {}, "test": {}, "train": {}}

        self.top_score = None

        self.lrs = {}

        self.batch_variables = {
            "data": self.data_loader,
            "model": self.model,
            "split": "train"
        }

        self.do_gen = cfg.do_gen
        self.samplers = {}

    def decide_to_save(self):
        to_save = cfg.save and not cfg.toy

        to_save = to_save or cfg.test_save
        print(cfg.save_strategy)
        if cfg.save_strategy == "best":
            if self.top_score[0] != self.opt.train.dynamic.epoch:
                print("DOING IT RIGHT")
                to_save = False
        return to_save

    def save_model(self, tracked_score):
        lrs = {}
        for i, param_group in enumerate(self.optimizer.param_groups):
            lrs[i] = param_group['lr']
        self.lrs[self.opt.train.dynamic.epoch] = lrs

        to_save = self.decide_to_save()

        if to_save:
            data.save_step(
                self.model, self.data_loader.vocab_encoder,
                self.optimizer, self.opt,
                self.opt.train.dynamic.epoch, self.lrs)

    def log_losses(self, opt, losses):
        if (not cfg.toy and cfg.save) or cfg.test_save:
            data.save_eval_file(opt, losses["train"], "losses", split="train")
            data.save_eval_file(opt, losses['dev'], "losses", split="dev")
            data.save_eval_file(opt, losses['test'], "losses", split="test")

    def set_logger(self):
        if cfg.toy:
            self.logger = SummaryWriter(utils.make_name(
                self.opt, prefix="garbage/logs/", eval_=True, do_epoch=False))
        else:
            self.logger = SummaryWriter(utils.make_name(
                self.opt, prefix="logs/", eval_=True, do_epoch=False))
        print("Logging Tensorboard Files at: {}".format(self.logger.logdir))

    def stop_logger(self):
        self.logger.close()

    def run(self):
        self.set_logger()
        self.count = 0
        for epoch in range(self.epochs):
            self.model.train()
            self.opt.train.dynamic.epoch += 1
            self.epoch()

        self.stop_logger()

    def epoch(self):
        nums = self.reset_losses()

        # Initialize progress bar
        bar = utils.initialize_progress_bar(
            self.data_loader.sequences["train"])

        reset = False

        while not reset:
            loss, nums, reset = self.do_forward_pass(nums)
            self.do_backward_pass(loss)
            self.update_parameters()

            bar.update(self.opt.train.dynamic.bs)
            self.count += 1

            for loss_name in self.losses["train"]:
                self.logger.add_scalar(
                    "train/{}".format(loss_name),
                    loss.item() / self.opt.train.dynamic.bs,
                    self.count)

            if cfg.toy and self.counter(nums) > 300:
                break

        with torch.no_grad():
            self.run_evaluation_cycle()

        self.log_losses(self.opt, self.losses)
        self.update_top_score(self.opt)
        self.save_model(self.get_tracked_score())

        self.data_loader.reset_offsets("train")

    def run_evaluation_cycle(self):
        for split in ["dev", "test"]:
            self.evaluator.validate(
                self.opt.train.dynamic.epoch, split,
                self.losses[split])

            if self.do_gen:
                gen.do_gen_run(
                    self.opt, self.generator, self.opt.train.dynamic.epoch,
                    split, self.losses[split])
            iter_num = self.opt.train.dynamic.epoch

            for loss_name in self.losses[split]:
                self.logger.add_scalar(
                    "{}/{}".format(split, loss_name),
                    self.losses[split][loss_name][iter_num],
                    iter_num)

    def clip_gradients(self):
        if self.opt.train.static.clip:
            torch.nn.utils.clip_grad_norm_(
                self.model.parameters(), self.opt.train.static.clip)

    def do_forward_pass(self, nums):
        token_loss, nums, reset = self.batch(
            self.opt, nums, self.losses["train"],
            self.batch_variables)
        return token_loss, nums, reset

    def do_backward_pass(self, loss):
        loss.backward()

    def update_parameters(self):
        if self.opt.model == "lstm":
                self.clip_gradients()
        self.optimizer.step()
        self.optimizer.zero_grad()

    def reset_losses(self):
        loss_names = set([i.rstrip("maicro").rstrip("_") for
                          i in self.losses["train"].keys()])
        return self.initialize_losses(list(loss_names))


class IteratorTrainer(Trainer):
    def __init__(self, opt, meta, data_loader, model, optimizer):
        super(IteratorTrainer, self).__init__(
            opt, meta, data_loader, model, optimizer)

        self.iters = meta.cycle
        self.total_iters = meta.iterations

    def run(self):
        self.set_logger()

        # Initialize progress bar
        bar = utils.set_progress_bar(self.total_iters)

        for cycle_num in range(int(self.total_iters / self.iters)):
            self.model.train()

            self.cycle(bar, cycle_num)

            with torch.no_grad():
                self.run_evaluation_cycle()

            self.log_losses(self.opt, self.losses)
            self.update_top_score(self.opt)
            self.save_model(self.get_tracked_score())

        self.stop_logger()

    def cycle(self, bar, cycle_num):
        nums = self.reset_losses()
        print(self.losses["train"])

        for i in range(1, self.iters + 1):
            # self.model.zero_grad()

            loss, nums, reset = self.do_forward_pass(nums)
            self.do_backward_pass(loss)

            self.update_parameters()
            # print(loss)
            # print(loss.item())
            self.opt.train.dynamic.epoch += 1

            for loss_name in self.losses["train"]:
                self.logger.add_scalar(
                    "train/{}".format(loss_name),
                    loss.item() / self.opt.train.dynamic.bs,
                    self.opt.train.dynamic.epoch)

            bar.update(1)

            if cfg.toy and i > 10:
                break

            if reset:
                self.data_loader.reset_offsets("train")