import gradio as gr from huggingface_hub import InferenceClient import csv import json def buscar_en_csv_y_generar_json(archivo_csv, valor_busqueda): resultados = [] with open(archivo_csv, mode='r', encoding='utf-8') as file: reader = csv.reader(file) for fila in reader: linea_completa = ','.join(fila) if valor_busqueda in linea_completa: resultados.append(fila) if resultados: return json.dumps(resultados, indent=4, ensure_ascii=False) else: return json.dumps({"mensaje": "No se encontraron coincidencias."}, indent=4, ensure_ascii=False) """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ css = "#component-2 {height: 350px}" def search(term): return buscar_en_csv_y_generar_json("proyectos_empresas.csv", term) with gr.Blocks(title="SPAIN WIND ENERGY LOBBY",css=css) as app: #with gr.Blocks(theme='gradio/soft') as demo: #with gr.Blocks(title="Sophia, Torah Codes") as app: #with gr.Row(): gr.ChatInterface( respond, additional_inputs=[ #gr.Textbox(value="You are a friendly Chatbot.", label="System message"), #gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), #gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), #gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", #), ], ) with gr.Row(): to_convert = gr.Textbox(value="Forestalia",label="Search",scale=3) search_els = gr.Button("Search",scale=1) with gr.Row(): #els_results = gr.JSON(label="Results") results = gr.JSON() search_els.click( search, inputs=[to_convert,to_convert], outputs= results ) if __name__ == "__main__": app.launch()