cryptocalypse's picture
more fields
d49eff8
import gradio as gr
from huggingface_hub import InferenceClient
import csv
import json
import matplotlib.pyplot as plt
import tempfile
# Par谩metros generales
r = 0.3 # Tasa de crecimiento
K = 1000 # Capacidad de carga
T = 20 # Tiempo total de simulaci贸n
# Funci贸n log铆stica
def logistic_growth(N, r, K):
return r * N * (1 - N / K)
# Funci贸n para simular el crecimiento
def simulate_population(t_values, initial_population, num_simulations):
population = np.zeros((len(t_values), num_simulations))
population[0] = initial_population
for t in range(1, len(t_values)):
for sim in range(num_simulations):
population[t, sim] = population[t-1, sim] + logistic_growth(population[t-1, sim], r, K)
return population
# Funci贸n para la interfaz de Gradio
def app(num_simulations, initial_population):
num_simulations = int(num_simulations)
initial_population = int(initial_population)
t_values = np.linspace(0, T, 100)
results = simulate_population(t_values, initial_population, num_simulations)
# Configuraci贸n de la visualizaci贸n
fig, axes = plt.subplots(nrows=num_simulations, ncols=1, figsize=(10, 8), sharex=True)
if num_simulations == 1:
axes = [axes]
for i, ax in enumerate(axes):
ax.plot(t_values, results[:, i], label=f'Simulaci贸n {i+1}', alpha=0.7)
ax.set_title(f'Simulaci贸n {i+1}')
ax.set_xlabel('Tiempo')
ax.set_ylabel('Poblaci贸n')
ax.legend()
ax.grid(True)
ax.set_ylim(0, 1200) # Ajustar l铆mites del eje y si es necesario
# Guardar la 煤ltima figura en un archivo temporal
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
temp_file.close()
fig.savefig(temp_file.name)
plt.close(fig)
return [temp_file.name, results.tolist()] # Devolver el nombre del archivo temporal y los resultados como lista
def buscar_en_csv_y_generar_json(archivo_csv, valor_busqueda):
resultados = []
with open(archivo_csv, mode='r', encoding='utf-8') as file:
reader = csv.reader(file)
for fila in reader:
linea_completa = ','.join(fila)
if valor_busqueda in linea_completa:
resultados.append(fila)
if resultados:
return json.dumps(resultados, indent=4, ensure_ascii=False)
else:
return json.dumps({"mensaje": "No se encontraron coincidencias."}, indent=4, ensure_ascii=False)
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
from PIL import Image
# Ruta a la imagen en tu disco
image_path = "images/grafica.png"
def load_image():
# Cargar la imagen desde el disco
img = Image.open(image_path)
return img
css = "#component-2 {height: 350px}"
def search(term):
return buscar_en_csv_y_generar_json("proyectos_empresas_full.csv", term)
with gr.Blocks(title="SPAIN WIND ENERGY LOBBY") as app:
#with gr.Blocks(theme='gradio/soft') as demo:
#with gr.Blocks(title="Sophia, Torah Codes") as app:
#with gr.Row():
"""
gr.ChatInterface(
respond,
additional_inputs=[
#gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
#gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
#),
],
)
"""
# with gr.Row():
with gr.Row():
from PIL import Image
gr.Interface(
fn=load_image, # La funci贸n que carga y devuelve la imagen
inputs=[], # No hay entradas desde el usuario
outputs="image", # Salida es una imagen
title="", # T铆tulo de la app
description="" # Descripci贸n
)
#gr.Plot(label="MW por promotor")
#gr.Plot(label="Ubicaci贸n por promotor")
#gr.Plot(label="Potencia promotor por ubicaci煤n")
with gr.Row():
to_convert = gr.Textbox(value="Forestalia",label="Search",scale=4)
search_els = gr.Button("Search",scale=1)
with gr.Row():
#els_results = gr.JSON(label="Results")
results = gr.JSON()
search_els.click(
search,
inputs=[to_convert],
outputs= results
)
if __name__ == "__main__":
app.launch()