File size: 3,041 Bytes
8795cec
 
 
088992d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8795cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de84611
088992d
de84611
088992d
 
f0a893b
de84611
 
 
95db923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a05e23
f151f9d
5a05e23
 
 
088992d
5a05e23
088992d
5a05e23
088992d
5a05e23
de84611
 
8795cec
 
 
de84611
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import gradio as gr
from huggingface_hub import InferenceClient

import csv
import json

def buscar_en_csv_y_generar_json(archivo_csv, valor_busqueda):
    resultados = []

    with open(archivo_csv, mode='r', encoding='utf-8') as file:
        reader = csv.reader(file)
        
        for fila in reader:
            linea_completa = ','.join(fila)
            if valor_busqueda in linea_completa:
                resultados.append(fila)

    if resultados:
        return json.dumps(resultados, indent=4, ensure_ascii=False)
    else:
        return json.dumps({"mensaje": "No se encontraron coincidencias."}, indent=4, ensure_ascii=False)


"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
css = "#component-2 {height: 350px}"
def search(term):

    return buscar_en_csv_y_generar_json("proyectos_empresas.csv", term)
    
with gr.Blocks(title="SPAIN WIND ENERGY LOBBY",css=css) as app:
#with gr.Blocks(theme='gradio/soft') as demo:
#with gr.Blocks(title="Sophia, Torah Codes") as app:
    #with gr.Row():
    gr.ChatInterface(
        respond,
        additional_inputs=[
            #gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
            #gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
            #gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
            #gr.Slider(
            #    minimum=0.1,
            #    maximum=1.0,
            #    value=0.95,
            #    step=0.05,
            #    label="Top-p (nucleus sampling)",
            #),
        ],
    )
    with gr.Row():
        to_convert = gr.Textbox(value="Forestalia",label="Search",scale=3)
        search_els = gr.Button("Search",scale=1)
    with gr.Row():
        #els_results = gr.JSON(label="Results")
        results = gr.JSON()
        search_els.click(
            search, 
            inputs=[to_convert,to_convert],
            outputs= results
        )   




if __name__ == "__main__":
    app.launch()