Spaces:
Runtime error
Runtime error
Victoria Slocum
commited on
Commit
Β·
a327de9
1
Parent(s):
8287126
Update: Add model type
Browse files- README.md +1 -1
- app.py +104 -96
- requirements.txt +1 -1
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: π
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: gray
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Gradio Pipeline Visualizer
|
| 3 |
emoji: π
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: gray
|
app.py
CHANGED
|
@@ -41,42 +41,29 @@ def download_svg(svg):
|
|
| 41 |
html = f'<a download="displacy.svg" href="{img}" style="{button_css}">Download as SVG</a>'
|
| 42 |
return html
|
| 43 |
|
| 44 |
-
# def download_png(svg):
|
| 45 |
-
# encode = base64.b64encode(bytes(svg, 'utf-8'))
|
| 46 |
-
# svg_uri = 'data:image/svg+xml;base64,' + str(encode)[2:-1]
|
| 47 |
-
# output = cairosvg.svg2png(url=svg_uri)
|
| 48 |
-
# encoded = base64.b64encode(output)
|
| 49 |
-
# img = 'data:image/png;base64,' + str(encoded)[2:-1]
|
| 50 |
-
# html = f'<a download="displacy.png" href="{img}" style="{button_css}">Download as PNG</a>'
|
| 51 |
-
# return html
|
| 52 |
-
|
| 53 |
-
# def download(type, svg):
|
| 54 |
-
# if type == 'png':
|
| 55 |
-
# return download_png(svg)
|
| 56 |
-
# elif type == 'svg':
|
| 57 |
-
# return download_svg(svg)
|
| 58 |
-
|
| 59 |
def dependency(text, col_punct, col_phrase, compact, bg, font, model):
|
| 60 |
-
|
|
|
|
| 61 |
doc = nlp(text)
|
| 62 |
options = {"compact": compact, "collapse_phrases": col_phrase,
|
| 63 |
"collapse_punct": col_punct, "bg": bg, "color": font}
|
| 64 |
svg = displacy.render(doc, style="dep", options=options)
|
| 65 |
download = download_svg(svg)
|
| 66 |
-
return svg, download
|
| 67 |
|
| 68 |
|
| 69 |
def entity(text, ents, model):
|
| 70 |
-
|
|
|
|
| 71 |
doc = nlp(text)
|
| 72 |
options = {"ents": ents}
|
| 73 |
svg = displacy.render(doc, style="ent", options=options)
|
| 74 |
-
|
| 75 |
-
return svg
|
| 76 |
|
| 77 |
|
| 78 |
def token(text, attributes, model):
|
| 79 |
-
|
|
|
|
| 80 |
data = []
|
| 81 |
doc = nlp(text)
|
| 82 |
for tok in doc:
|
|
@@ -85,11 +72,12 @@ def token(text, attributes, model):
|
|
| 85 |
tok_data.append(getattr(tok, attr))
|
| 86 |
data.append(tok_data)
|
| 87 |
data = pd.DataFrame(data, columns=attributes)
|
| 88 |
-
return data
|
| 89 |
|
| 90 |
|
| 91 |
def default_token(text, attributes, model):
|
| 92 |
-
|
|
|
|
| 93 |
data = []
|
| 94 |
doc = nlp(text)
|
| 95 |
for tok in doc:
|
|
@@ -97,27 +85,30 @@ def default_token(text, attributes, model):
|
|
| 97 |
for attr in attributes:
|
| 98 |
tok_data.append(getattr(tok, attr))
|
| 99 |
data.append(tok_data)
|
| 100 |
-
return data
|
| 101 |
|
| 102 |
|
| 103 |
def random_vectors(text, model):
|
| 104 |
-
|
|
|
|
| 105 |
doc = nlp(text)
|
| 106 |
n_chunks = [chunk for chunk in doc.noun_chunks if doc.noun_chunks]
|
| 107 |
words = [tok for tok in doc if not tok.is_stop and tok.pos_ not in [
|
| 108 |
'PUNCT', "PROPN"]]
|
| 109 |
str_list = n_chunks + words
|
| 110 |
choice = random.choices(str_list, k=2)
|
| 111 |
-
return round(choice[0].similarity(choice[1]), 2), choice[0].text, choice[1].text
|
| 112 |
|
| 113 |
|
| 114 |
def vectors(input1, input2, model):
|
| 115 |
-
|
| 116 |
-
|
|
|
|
| 117 |
|
| 118 |
|
| 119 |
def span(text, span1, span2, label1, label2, model):
|
| 120 |
-
|
|
|
|
| 121 |
doc = nlp(text)
|
| 122 |
if span1:
|
| 123 |
idx1_1 = 0
|
|
@@ -155,8 +146,7 @@ def span(text, span1, span2, label1, label2, model):
|
|
| 155 |
]
|
| 156 |
|
| 157 |
svg = displacy.render(doc, style="span")
|
| 158 |
-
|
| 159 |
-
return svg
|
| 160 |
|
| 161 |
|
| 162 |
def get_text(model):
|
|
@@ -200,13 +190,21 @@ with demo:
|
|
| 200 |
with gr.Column():
|
| 201 |
gr.Markdown("")
|
| 202 |
|
| 203 |
-
button = gr.Button("
|
| 204 |
with gr.Box():
|
| 205 |
with gr.Column():
|
| 206 |
-
gr.
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
with gr.Row():
|
| 211 |
with gr.Column():
|
| 212 |
col_punct = gr.Checkbox(
|
|
@@ -221,43 +219,47 @@ with demo:
|
|
| 221 |
text = gr.Textbox(
|
| 222 |
label="Text Color", value="black")
|
| 223 |
|
| 224 |
-
|
| 225 |
DEFAULT_TEXT, True, True, False, DEFAULT_COLOR, "black", DEFAULT_MODEL)[0])
|
| 226 |
with gr.Row():
|
| 227 |
with gr.Column():
|
| 228 |
-
dep_button = gr.Button("
|
| 229 |
with gr.Column():
|
| 230 |
-
dep_download_button = gr.HTML(value=download_svg(
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
gr.Markdown(" ")
|
| 235 |
with gr.Box():
|
| 236 |
with gr.Column():
|
| 237 |
-
gr.
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
ent_input = gr.CheckboxGroup(
|
| 242 |
DEFAULT_ENTS, value=DEFAULT_ENTS)
|
| 243 |
ent_output = gr.HTML(value=entity(
|
| 244 |
-
DEFAULT_TEXT, DEFAULT_ENTS, DEFAULT_MODEL))
|
| 245 |
-
ent_button = gr.Button("
|
| 246 |
-
# with gr.Row():
|
| 247 |
-
# with gr.Column():
|
| 248 |
-
# ent_button = gr.Button("Generate Entity Recognizer", variant="primary")
|
| 249 |
-
# with gr.Column():
|
| 250 |
-
# ent_download_button = gr.HTML(value=download_svg(ent_output.value))
|
| 251 |
-
# with gr.Column():
|
| 252 |
-
# gr.Markdown(" ")
|
| 253 |
-
# with gr.Column():
|
| 254 |
-
# gr.Markdown(" ")
|
| 255 |
with gr.Box():
|
| 256 |
with gr.Column():
|
| 257 |
-
gr.
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
with gr.Row():
|
| 262 |
with gr.Column():
|
| 263 |
tok_input = gr.CheckboxGroup(
|
|
@@ -265,14 +267,22 @@ with demo:
|
|
| 265 |
with gr.Column():
|
| 266 |
gr.Markdown("")
|
| 267 |
tok_output = gr.Dataframe(headers=DEFAULT_TOK_ATTR, value=default_token(
|
| 268 |
-
DEFAULT_TEXT, DEFAULT_TOK_ATTR, DEFAULT_MODEL), overflow_row_behaviour="paginate")
|
| 269 |
-
tok_button = gr.Button("
|
| 270 |
with gr.Box():
|
| 271 |
with gr.Column():
|
| 272 |
-
gr.
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
with gr.Row():
|
| 277 |
with gr.Column():
|
| 278 |
sim_text1 = gr.Textbox(
|
|
@@ -285,15 +295,22 @@ with demo:
|
|
| 285 |
label="Similarity Score", value="0.12")
|
| 286 |
with gr.Column():
|
| 287 |
gr.Markdown("")
|
| 288 |
-
sim_random_button = gr.Button("
|
| 289 |
-
sim_button = gr.Button("
|
| 290 |
with gr.Box():
|
| 291 |
with gr.Column():
|
| 292 |
-
gr.
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
with gr.Row():
|
| 298 |
with gr.Column():
|
| 299 |
span1 = gr.Textbox(
|
|
@@ -317,39 +334,30 @@ with demo:
|
|
| 317 |
with gr.Column():
|
| 318 |
gr.Markdown("")
|
| 319 |
span_output = gr.HTML(value=span(
|
| 320 |
-
DEFAULT_TEXT, "U.K. startup", "U.K.", "ORG", "GPE", DEFAULT_MODEL))
|
| 321 |
-
span_button = gr.Button("
|
| 322 |
-
# with gr.Row():
|
| 323 |
-
# with gr.Column():
|
| 324 |
-
# span_button = gr.Button("Generate Spans", variant="primary")
|
| 325 |
-
# with gr.Column():
|
| 326 |
-
# span_download_button = gr.HTML(value=download_svg(span_output.value))
|
| 327 |
-
# with gr.Column():
|
| 328 |
-
# gr.Markdown(" ")
|
| 329 |
-
# with gr.Column():
|
| 330 |
-
# gr.Markdown(" ")
|
| 331 |
|
| 332 |
model_input.change(get_text, inputs=[model_input], outputs=text_input)
|
| 333 |
button.click(dependency, inputs=[
|
| 334 |
-
text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=[
|
| 335 |
button.click(
|
| 336 |
-
entity, inputs=[text_input, ent_input, model_input], outputs=[ent_output])
|
| 337 |
button.click(
|
| 338 |
-
token, inputs=[text_input, tok_input, model_input], outputs=tok_output)
|
| 339 |
button.click(vectors, inputs=[sim_text1,
|
| 340 |
-
sim_text2, model_input], outputs=sim_output)
|
| 341 |
button.click(
|
| 342 |
-
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=[span_output])
|
| 343 |
dep_button.click(dependency, inputs=[
|
| 344 |
-
text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=[
|
| 345 |
ent_button.click(
|
| 346 |
-
entity, inputs=[text_input, ent_input, model_input], outputs=[ent_output])
|
| 347 |
tok_button.click(
|
| 348 |
-
token, inputs=[text_input, tok_input, model_input], outputs=[tok_output])
|
| 349 |
sim_button.click(vectors, inputs=[
|
| 350 |
-
sim_text1, sim_text2, model_input], outputs=sim_output)
|
| 351 |
span_button.click(
|
| 352 |
-
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=[span_output])
|
| 353 |
sim_random_button.click(random_vectors, inputs=[text_input, model_input], outputs=[
|
| 354 |
-
sim_output, sim_text1, sim_text2])
|
| 355 |
demo.launch()
|
|
|
|
| 41 |
html = f'<a download="displacy.svg" href="{img}" style="{button_css}">Download as SVG</a>'
|
| 42 |
return html
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
def dependency(text, col_punct, col_phrase, compact, bg, font, model):
|
| 45 |
+
model_name = model + "_sm"
|
| 46 |
+
nlp = spacy.load(model_name)
|
| 47 |
doc = nlp(text)
|
| 48 |
options = {"compact": compact, "collapse_phrases": col_phrase,
|
| 49 |
"collapse_punct": col_punct, "bg": bg, "color": font}
|
| 50 |
svg = displacy.render(doc, style="dep", options=options)
|
| 51 |
download = download_svg(svg)
|
| 52 |
+
return svg, download, model_name
|
| 53 |
|
| 54 |
|
| 55 |
def entity(text, ents, model):
|
| 56 |
+
model_name = model + "_sm"
|
| 57 |
+
nlp = spacy.load(model_name)
|
| 58 |
doc = nlp(text)
|
| 59 |
options = {"ents": ents}
|
| 60 |
svg = displacy.render(doc, style="ent", options=options)
|
| 61 |
+
return svg, model_name
|
|
|
|
| 62 |
|
| 63 |
|
| 64 |
def token(text, attributes, model):
|
| 65 |
+
model_name = model + "_sm"
|
| 66 |
+
nlp = spacy.load(model_name)
|
| 67 |
data = []
|
| 68 |
doc = nlp(text)
|
| 69 |
for tok in doc:
|
|
|
|
| 72 |
tok_data.append(getattr(tok, attr))
|
| 73 |
data.append(tok_data)
|
| 74 |
data = pd.DataFrame(data, columns=attributes)
|
| 75 |
+
return data, model_name
|
| 76 |
|
| 77 |
|
| 78 |
def default_token(text, attributes, model):
|
| 79 |
+
model_name = model + "_sm"
|
| 80 |
+
nlp = spacy.load(model_name)
|
| 81 |
data = []
|
| 82 |
doc = nlp(text)
|
| 83 |
for tok in doc:
|
|
|
|
| 85 |
for attr in attributes:
|
| 86 |
tok_data.append(getattr(tok, attr))
|
| 87 |
data.append(tok_data)
|
| 88 |
+
return data, model_name
|
| 89 |
|
| 90 |
|
| 91 |
def random_vectors(text, model):
|
| 92 |
+
model_name = model + "_md"
|
| 93 |
+
nlp = spacy.load(model_name)
|
| 94 |
doc = nlp(text)
|
| 95 |
n_chunks = [chunk for chunk in doc.noun_chunks if doc.noun_chunks]
|
| 96 |
words = [tok for tok in doc if not tok.is_stop and tok.pos_ not in [
|
| 97 |
'PUNCT', "PROPN"]]
|
| 98 |
str_list = n_chunks + words
|
| 99 |
choice = random.choices(str_list, k=2)
|
| 100 |
+
return round(choice[0].similarity(choice[1]), 2), choice[0].text, choice[1].text, model_name
|
| 101 |
|
| 102 |
|
| 103 |
def vectors(input1, input2, model):
|
| 104 |
+
model_name = model + "_md"
|
| 105 |
+
nlp = spacy.load(model_name)
|
| 106 |
+
return round(nlp(input1).similarity(nlp(input2)), 2), model_name
|
| 107 |
|
| 108 |
|
| 109 |
def span(text, span1, span2, label1, label2, model):
|
| 110 |
+
model_name = model + "_sm"
|
| 111 |
+
nlp = spacy.load(model_name)
|
| 112 |
doc = nlp(text)
|
| 113 |
if span1:
|
| 114 |
idx1_1 = 0
|
|
|
|
| 146 |
]
|
| 147 |
|
| 148 |
svg = displacy.render(doc, style="span")
|
| 149 |
+
return svg, model_name
|
|
|
|
| 150 |
|
| 151 |
|
| 152 |
def get_text(model):
|
|
|
|
| 190 |
with gr.Column():
|
| 191 |
gr.Markdown("")
|
| 192 |
|
| 193 |
+
button = gr.Button("Update", variant="primary")
|
| 194 |
with gr.Box():
|
| 195 |
with gr.Column():
|
| 196 |
+
with gr.Row():
|
| 197 |
+
with gr.Column():
|
| 198 |
+
gr.Markdown(
|
| 199 |
+
"## [Dependency Parser](https://spacy.io/usage/visualizers#dep)")
|
| 200 |
+
gr.Markdown(
|
| 201 |
+
"The dependency visualizer shows part-of-speech tags and syntactic dependencies")
|
| 202 |
+
with gr.Column():
|
| 203 |
+
with gr.Row():
|
| 204 |
+
with gr.Column():
|
| 205 |
+
gr.Markdown(" ")
|
| 206 |
+
with gr.Column():
|
| 207 |
+
dep_model = gr.Textbox(label="Model", value="en_core_web_sm")
|
| 208 |
with gr.Row():
|
| 209 |
with gr.Column():
|
| 210 |
col_punct = gr.Checkbox(
|
|
|
|
| 219 |
text = gr.Textbox(
|
| 220 |
label="Text Color", value="black")
|
| 221 |
|
| 222 |
+
dep_output = gr.HTML(value=dependency(
|
| 223 |
DEFAULT_TEXT, True, True, False, DEFAULT_COLOR, "black", DEFAULT_MODEL)[0])
|
| 224 |
with gr.Row():
|
| 225 |
with gr.Column():
|
| 226 |
+
dep_button = gr.Button("Update Dependency Parser", variant="primary")
|
| 227 |
with gr.Column():
|
| 228 |
+
dep_download_button = gr.HTML(value=download_svg(dep_output.value))
|
|
|
|
|
|
|
|
|
|
| 229 |
gr.Markdown(" ")
|
| 230 |
with gr.Box():
|
| 231 |
with gr.Column():
|
| 232 |
+
with gr.Row():
|
| 233 |
+
with gr.Column():
|
| 234 |
+
gr.Markdown(
|
| 235 |
+
"## [Entity Recognizer](https://spacy.io/usage/visualizers#ent)")
|
| 236 |
+
gr.Markdown(
|
| 237 |
+
"The entity visualizer highlights named entities and their labels in a text")
|
| 238 |
+
with gr.Column():
|
| 239 |
+
with gr.Row():
|
| 240 |
+
with gr.Column():
|
| 241 |
+
gr.Markdown(" ")
|
| 242 |
+
with gr.Column():
|
| 243 |
+
ent_model = gr.Textbox(label="Model", value="en_core_web_sm")
|
| 244 |
ent_input = gr.CheckboxGroup(
|
| 245 |
DEFAULT_ENTS, value=DEFAULT_ENTS)
|
| 246 |
ent_output = gr.HTML(value=entity(
|
| 247 |
+
DEFAULT_TEXT, DEFAULT_ENTS, DEFAULT_MODEL)[0])
|
| 248 |
+
ent_button = gr.Button("Update Entity Recognizer", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
with gr.Box():
|
| 250 |
with gr.Column():
|
| 251 |
+
with gr.Row():
|
| 252 |
+
with gr.Column():
|
| 253 |
+
gr.Markdown(
|
| 254 |
+
"## [Token Properties](https://spacy.io/usage/linguistic-features)")
|
| 255 |
+
gr.Markdown(
|
| 256 |
+
"When you put in raw text to spaCy, it returns a Doc object with different linguistic features")
|
| 257 |
+
with gr.Column():
|
| 258 |
+
with gr.Row():
|
| 259 |
+
with gr.Column():
|
| 260 |
+
gr.Markdown(" ")
|
| 261 |
+
with gr.Column():
|
| 262 |
+
tok_model = gr.Textbox(label="Model", value="en_core_web_sm")
|
| 263 |
with gr.Row():
|
| 264 |
with gr.Column():
|
| 265 |
tok_input = gr.CheckboxGroup(
|
|
|
|
| 267 |
with gr.Column():
|
| 268 |
gr.Markdown("")
|
| 269 |
tok_output = gr.Dataframe(headers=DEFAULT_TOK_ATTR, value=default_token(
|
| 270 |
+
DEFAULT_TEXT, DEFAULT_TOK_ATTR, DEFAULT_MODEL)[0], overflow_row_behaviour="paginate")
|
| 271 |
+
tok_button = gr.Button("Update Token Properties", variant="primary")
|
| 272 |
with gr.Box():
|
| 273 |
with gr.Column():
|
| 274 |
+
with gr.Row():
|
| 275 |
+
with gr.Column():
|
| 276 |
+
gr.Markdown(
|
| 277 |
+
"## [Word and Phrase Similarity](https://spacy.io/usage/linguistic-features#vectors-similarity)")
|
| 278 |
+
gr.Markdown(
|
| 279 |
+
"Words and spans have similarity ratings based off of their word vectors, or word embeddings")
|
| 280 |
+
with gr.Column():
|
| 281 |
+
with gr.Row():
|
| 282 |
+
with gr.Column():
|
| 283 |
+
gr.Markdown(" ")
|
| 284 |
+
with gr.Column():
|
| 285 |
+
sim_model = gr.Textbox(label="Model", value="en_core_web_md")
|
| 286 |
with gr.Row():
|
| 287 |
with gr.Column():
|
| 288 |
sim_text1 = gr.Textbox(
|
|
|
|
| 295 |
label="Similarity Score", value="0.12")
|
| 296 |
with gr.Column():
|
| 297 |
gr.Markdown("")
|
| 298 |
+
sim_random_button = gr.Button("Update random words")
|
| 299 |
+
sim_button = gr.Button("Update similarity", variant="primary")
|
| 300 |
with gr.Box():
|
| 301 |
with gr.Column():
|
| 302 |
+
with gr.Row():
|
| 303 |
+
with gr.Column():
|
| 304 |
+
gr.Markdown(
|
| 305 |
+
"## [Spans](https://spacy.io/usage/visualizers#span)")
|
| 306 |
+
gr.Markdown(
|
| 307 |
+
"The span visualizer highlights overlapping spans in a text")
|
| 308 |
+
with gr.Column():
|
| 309 |
+
with gr.Row():
|
| 310 |
+
with gr.Column():
|
| 311 |
+
gr.Markdown(" ")
|
| 312 |
+
with gr.Column():
|
| 313 |
+
span_model = gr.Textbox(label="Model", value="en_core_web_sm")
|
| 314 |
with gr.Row():
|
| 315 |
with gr.Column():
|
| 316 |
span1 = gr.Textbox(
|
|
|
|
| 334 |
with gr.Column():
|
| 335 |
gr.Markdown("")
|
| 336 |
span_output = gr.HTML(value=span(
|
| 337 |
+
DEFAULT_TEXT, "U.K. startup", "U.K.", "ORG", "GPE", DEFAULT_MODEL)[0])
|
| 338 |
+
span_button = gr.Button("Update Spans", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 339 |
|
| 340 |
model_input.change(get_text, inputs=[model_input], outputs=text_input)
|
| 341 |
button.click(dependency, inputs=[
|
| 342 |
+
text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=[dep_output, dep_download_button, dep_model])
|
| 343 |
button.click(
|
| 344 |
+
entity, inputs=[text_input, ent_input, model_input], outputs=[ent_output, ent_model])
|
| 345 |
button.click(
|
| 346 |
+
token, inputs=[text_input, tok_input, model_input], outputs=[tok_output, tok_model])
|
| 347 |
button.click(vectors, inputs=[sim_text1,
|
| 348 |
+
sim_text2, model_input], outputs=[sim_output, sim_model])
|
| 349 |
button.click(
|
| 350 |
+
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=[span_output, span_model])
|
| 351 |
dep_button.click(dependency, inputs=[
|
| 352 |
+
text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=[dep_output, dep_download_button, dep_model])
|
| 353 |
ent_button.click(
|
| 354 |
+
entity, inputs=[text_input, ent_input, model_input], outputs=[ent_output, ent_model])
|
| 355 |
tok_button.click(
|
| 356 |
+
token, inputs=[text_input, tok_input, model_input], outputs=[tok_output, tok_model])
|
| 357 |
sim_button.click(vectors, inputs=[
|
| 358 |
+
sim_text1, sim_text2, model_input], outputs=[sim_output, sim_model])
|
| 359 |
span_button.click(
|
| 360 |
+
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=[span_output, span_model])
|
| 361 |
sim_random_button.click(random_vectors, inputs=[text_input, model_input], outputs=[
|
| 362 |
+
sim_output, sim_text1, sim_text2, sim_model])
|
| 363 |
demo.launch()
|
requirements.txt
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
pandas==1.4.2
|
| 2 |
gradio==3.0.18
|
| 3 |
-
spacy==3.
|
| 4 |
|
| 5 |
https://huggingface.co/spacy/ca_core_news_md/resolve/main/ca_core_news_md-any-py3-none-any.whl
|
| 6 |
https://huggingface.co/spacy/ca_core_news_sm/resolve/main/ca_core_news_sm-any-py3-none-any.whl
|
|
|
|
| 1 |
pandas==1.4.2
|
| 2 |
gradio==3.0.18
|
| 3 |
+
spacy==3.3.1
|
| 4 |
|
| 5 |
https://huggingface.co/spacy/ca_core_news_md/resolve/main/ca_core_news_md-any-py3-none-any.whl
|
| 6 |
https://huggingface.co/spacy/ca_core_news_sm/resolve/main/ca_core_news_sm-any-py3-none-any.whl
|