{ "cells": [ { "cell_type": "markdown", "metadata": { "vscode": { "languageId": "plaintext" } }, "source": [ "In this notebook, we will be discussing about the pytorch lightning datamodule library with images in a folder strutcture with folders as class labels. We will be using the cats and dogs dataset from kaggle. The dataset can be downloaded from [here](https://www.kaggle.com/c/dogs-vs-cats/data). The dataset contains 25000 images of cats and dogs. We will be using 20000 images for training and 5000 images for validation. The images are in a folder structure with folders as class labels." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "application/javascript": "IPython.notebook.set_autosave_interval(300000)" }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Autosaving every 300 seconds\n" ] } ], "source": [ "%autosave 300\n", "%load_ext autoreload\n", "%autoreload 2\n", "%reload_ext autoreload\n", "%config Completer.use_jedi = False" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/mnt/batch/tasks/shared/LS_root/mounts/clusters/soutrik-vm-dev/code/Users/Soutrik.Chowdhury/pytorch-template-aws\n" ] } ], "source": [ "\n", "import os\n", "\n", "os.chdir(\"..\")\n", "print(os.getcwd())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "emlo_env", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.15" } }, "nbformat": 4, "nbformat_minor": 2 }