Spaces:
Runtime error
Runtime error
File size: 9,085 Bytes
8d4131e 3fa4d71 8d4131e 3fa4d71 4828471 8d4131e 3fa4d71 8d4131e 3fa4d71 8d4131e 4828471 8d4131e 4828471 8d4131e 3749e6c 8d4131e 3749e6c 8d4131e 3fa4d71 3749e6c 8d4131e 3749e6c 8d4131e 3749e6c 8d4131e 3749e6c 8d4131e 3749e6c 3fa4d71 3749e6c 3fa4d71 98ad2ca 4828471 3749e6c 8d4131e 3fa4d71 3749e6c 3fa4d71 3749e6c 3fa4d71 3749e6c 8d4131e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
"""
Train and evaluate a model using PyTorch Lightning with Optuna for hyperparameter optimization.
"""
import os
import shutil
from pathlib import Path
from typing import List
import torch
import lightning as L
from dotenv import load_dotenv, find_dotenv
import hydra
from omegaconf import DictConfig, OmegaConf
from src.utils.logging_utils import setup_logger, task_wrapper
from loguru import logger
import rootutils
from lightning.pytorch.loggers import Logger
from lightning.pytorch.callbacks import Callback
import optuna
from lightning.pytorch import Trainer
import json
from src.utils.aws_s3_services import S3Handler
# Load environment variables
load_dotenv(find_dotenv(".env"))
# Setup root directory
root = rootutils.setup_root(__file__, indicator=".project-root")
def instantiate_callbacks(callback_cfg: DictConfig) -> List[Callback]:
"""Instantiate and return a list of callbacks from the configuration."""
callbacks: List[L.Callback] = []
if not callback_cfg:
logger.warning("No callback configs found! Skipping..")
return callbacks
if not isinstance(callback_cfg, DictConfig):
raise TypeError("Callbacks config must be a DictConfig!")
for _, cb_conf in callback_cfg.items():
if "_target_" in cb_conf:
logger.info(f"Instantiating callback <{cb_conf._target_}>")
callbacks.append(hydra.utils.instantiate(cb_conf))
return callbacks
def instantiate_loggers(logger_cfg: DictConfig) -> List[Logger]:
"""Instantiate and return a list of loggers from the configuration."""
loggers_ls: List[Logger] = []
if not logger_cfg or isinstance(logger_cfg, bool):
logger.warning("No valid logger configs found! Skipping..")
return loggers_ls
if not isinstance(logger_cfg, DictConfig):
raise TypeError("Logger config must be a DictConfig!")
for _, lg_conf in logger_cfg.items():
if isinstance(lg_conf, DictConfig) and "_target_" in lg_conf:
logger.info(f"Instantiating logger <{lg_conf._target_}>")
try:
loggers_ls.append(hydra.utils.instantiate(lg_conf))
except Exception as e:
logger.error(f"Failed to instantiate logger {lg_conf}: {e}")
return loggers_ls
def load_checkpoint_if_available(ckpt_path: str) -> str:
"""Return the checkpoint path if available, else None."""
if ckpt_path and Path(ckpt_path).exists():
logger.info(f"Using checkpoint: {ckpt_path}")
return ckpt_path
logger.warning(f"Checkpoint not found at {ckpt_path}. Using current model weights.")
return None
def clear_checkpoint_directory(ckpt_dir: str):
"""Clear checkpoint directory contents without removing the directory."""
ckpt_dir_path = Path(ckpt_dir)
if not ckpt_dir_path.exists():
logger.info(f"Creating checkpoint directory: {ckpt_dir}")
ckpt_dir_path.mkdir(parents=True, exist_ok=True)
else:
logger.info(f"Clearing checkpoint directory: {ckpt_dir}")
for item in ckpt_dir_path.iterdir():
try:
item.unlink() if item.is_file() else shutil.rmtree(item)
except Exception as e:
logger.error(f"Failed to delete {item}: {e}")
@task_wrapper
def train_module(
data_module: L.LightningDataModule, model: L.LightningModule, trainer: L.Trainer
):
"""Train the model, return validation accuracy for each epoch."""
logger.info("Starting training with custom pruning")
trainer.fit(model, data_module)
val_accuracies = []
for epoch in range(trainer.current_epoch):
val_acc = trainer.callback_metrics.get("val_acc")
if val_acc is not None:
val_accuracies.append(val_acc.item())
logger.info(f"Epoch {epoch}: val_acc={val_acc}")
return val_accuracies
@task_wrapper
def run_test_module(
cfg: DictConfig,
datamodule: L.LightningDataModule,
model: L.LightningModule,
trainer: L.Trainer,
):
"""Test the model using the best checkpoint or current model weights."""
logger.info("Starting testing")
datamodule.setup(stage="test")
test_metrics = trainer.test(
model, datamodule, ckpt_path=load_checkpoint_if_available(cfg.ckpt_path)
)
logger.info(f"Test metrics: {test_metrics}")
return test_metrics[0] if test_metrics else {}
def objective(trial: optuna.trial.Trial, cfg: DictConfig, callbacks: List[Callback]):
"""Objective function for Optuna hyperparameter tuning."""
# Sample hyperparameters for the model
# cfg.model.embed_dim = trial.suggest_categorical("embed_dim", [64, 128, 256])
# cfg.model.depth = trial.suggest_int("depth", 2, 6)
cfg.model.lr = trial.suggest_loguniform("lr", 1e-5, 1e-3)
# cfg.model.mlp_ratio = trial.suggest_float("mlp_ratio", 1.0, 4.0)
# Initialize data module and model
data_module: L.LightningDataModule = hydra.utils.instantiate(cfg.data)
model: L.LightningModule = hydra.utils.instantiate(cfg.model)
# Set up logger
loggers = instantiate_loggers(cfg.logger)
# Trainer configuration with passed callbacks
trainer = Trainer(**cfg.trainer, logger=loggers, callbacks=callbacks)
# Train and get val_acc for each epoch
val_accuracies = train_module(data_module, model, trainer)
# Report validation accuracy and prune if necessary
for epoch, val_acc in enumerate(val_accuracies):
trial.report(val_acc, step=epoch)
# Check if the trial should be pruned at this epoch
if trial.should_prune():
logger.info(f"Pruning trial at epoch {epoch}")
raise optuna.TrialPruned()
# Return the final validation accuracy as the objective metric
return val_accuracies[-1] if val_accuracies else 0.0
@hydra.main(config_path="../configs", config_name="train", version_base="1.3")
def setup_trainer(cfg: DictConfig):
logger.info(f"Config:\n{OmegaConf.to_yaml(cfg)}")
setup_logger(
Path(cfg.paths.log_dir)
/ ("train.log" if cfg.task_name == "train" else "test.log")
)
# Instantiate callbacks
callbacks = instantiate_callbacks(cfg.callbacks)
logger.info(f"Callbacks: {callbacks}")
# Training phase with Optuna
if cfg.get("train", False):
clear_checkpoint_directory(cfg.paths.ckpt_dir)
# Optuna study setup
pruner = optuna.pruners.MedianPruner()
study = optuna.create_study(
direction="maximize", pruner=pruner, study_name="pytorch_lightning_optuna"
)
study.optimize(
lambda trial: objective(trial, cfg, callbacks),
n_trials=cfg.n_trials,
show_progress_bar=True,
)
# Log best trial results and save hyperparameters
best_trial = study.best_trial
logger.info(f"Best trial number: {best_trial.number}")
logger.info(f"Best trial value (val_acc): {best_trial.value}")
best_hyperparams = best_trial.params
logger.info(f"Best hyperparameters: {best_hyperparams}")
# Save best hyperparameters to JSON
best_hyperparams_path = Path(cfg.paths.ckpt_dir) / "best_hyperparams.json"
with open(best_hyperparams_path, "w") as f:
json.dump(best_hyperparams, f, indent=4)
logger.info(f"Best hyperparameters saved to {best_hyperparams_path}")
# train_done.flag file to indicate training completion in checkpoints directory
with open(Path(cfg.paths.ckpt_dir) / "train_done.flag", "w") as f:
f.write("Training completed successfully!")
# upload the checkpoints to S3
s3_handler = S3Handler(bucket_name="deep-bucket-s3")
s3_handler.upload_folder(
"checkpoints",
"checkpoints",
)
# Testing phase with best hyperparameters
if cfg.get("test", False):
best_hyperparams_path = Path(cfg.paths.ckpt_dir) / "best_hyperparams.json"
logger.info(f"Testing with best hyperparameters from {best_hyperparams_path}")
if best_hyperparams_path.exists():
with open(best_hyperparams_path, "r") as f:
best_hyperparams = json.load(f)
cfg.model.update(best_hyperparams)
logger.info(f"Loaded best hyperparameters for testing: {best_hyperparams}")
else:
logger.error(
"Best hyperparameters not found! Ensure training has run with `train=True` and saved the hyperparameters."
)
raise FileNotFoundError("Best hyperparameters not found!")
# Initialize data module, model, and trainer for testing
data_module: L.LightningDataModule = hydra.utils.instantiate(cfg.data)
model: L.LightningModule = hydra.utils.instantiate(cfg.model)
trainer = Trainer(**cfg.trainer, logger=instantiate_loggers(cfg.logger))
test_metrics = run_test_module(cfg, data_module, model, trainer)
logger.info(f"Test metrics: {test_metrics}")
return cfg.model if not cfg.get("test", False) else test_metrics
if __name__ == "__main__":
setup_trainer()
|