File size: 9,085 Bytes
8d4131e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fa4d71
8d4131e
 
3fa4d71
4828471
8d4131e
 
 
 
 
 
 
 
3fa4d71
8d4131e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fa4d71
8d4131e
 
 
4828471
 
8d4131e
4828471
8d4131e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3749e6c
8d4131e
 
 
 
 
 
3749e6c
8d4131e
3fa4d71
3749e6c
 
8d4131e
 
 
 
 
 
3749e6c
8d4131e
 
 
3749e6c
8d4131e
 
 
3749e6c
 
8d4131e
3749e6c
3fa4d71
 
3749e6c
3fa4d71
 
98ad2ca
 
 
 
4828471
 
 
 
 
 
 
3749e6c
8d4131e
3fa4d71
3749e6c
 
3fa4d71
 
 
 
 
 
 
3749e6c
3fa4d71
 
 
3749e6c
8d4131e
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
"""
Train and evaluate a model using PyTorch Lightning with Optuna for hyperparameter optimization.
"""

import os
import shutil
from pathlib import Path
from typing import List
import torch
import lightning as L
from dotenv import load_dotenv, find_dotenv
import hydra
from omegaconf import DictConfig, OmegaConf
from src.utils.logging_utils import setup_logger, task_wrapper
from loguru import logger
import rootutils
from lightning.pytorch.loggers import Logger
from lightning.pytorch.callbacks import Callback
import optuna
from lightning.pytorch import Trainer
import json
from src.utils.aws_s3_services import S3Handler

# Load environment variables
load_dotenv(find_dotenv(".env"))

# Setup root directory
root = rootutils.setup_root(__file__, indicator=".project-root")


def instantiate_callbacks(callback_cfg: DictConfig) -> List[Callback]:
    """Instantiate and return a list of callbacks from the configuration."""
    callbacks: List[L.Callback] = []

    if not callback_cfg:
        logger.warning("No callback configs found! Skipping..")
        return callbacks

    if not isinstance(callback_cfg, DictConfig):
        raise TypeError("Callbacks config must be a DictConfig!")

    for _, cb_conf in callback_cfg.items():
        if "_target_" in cb_conf:
            logger.info(f"Instantiating callback <{cb_conf._target_}>")
            callbacks.append(hydra.utils.instantiate(cb_conf))

    return callbacks


def instantiate_loggers(logger_cfg: DictConfig) -> List[Logger]:
    """Instantiate and return a list of loggers from the configuration."""
    loggers_ls: List[Logger] = []

    if not logger_cfg or isinstance(logger_cfg, bool):
        logger.warning("No valid logger configs found! Skipping..")
        return loggers_ls

    if not isinstance(logger_cfg, DictConfig):
        raise TypeError("Logger config must be a DictConfig!")

    for _, lg_conf in logger_cfg.items():
        if isinstance(lg_conf, DictConfig) and "_target_" in lg_conf:
            logger.info(f"Instantiating logger <{lg_conf._target_}>")
            try:
                loggers_ls.append(hydra.utils.instantiate(lg_conf))
            except Exception as e:
                logger.error(f"Failed to instantiate logger {lg_conf}: {e}")
    return loggers_ls


def load_checkpoint_if_available(ckpt_path: str) -> str:
    """Return the checkpoint path if available, else None."""
    if ckpt_path and Path(ckpt_path).exists():
        logger.info(f"Using checkpoint: {ckpt_path}")
        return ckpt_path
    logger.warning(f"Checkpoint not found at {ckpt_path}. Using current model weights.")
    return None


def clear_checkpoint_directory(ckpt_dir: str):
    """Clear checkpoint directory contents without removing the directory."""
    ckpt_dir_path = Path(ckpt_dir)
    if not ckpt_dir_path.exists():
        logger.info(f"Creating checkpoint directory: {ckpt_dir}")
        ckpt_dir_path.mkdir(parents=True, exist_ok=True)
    else:
        logger.info(f"Clearing checkpoint directory: {ckpt_dir}")
        for item in ckpt_dir_path.iterdir():
            try:
                item.unlink() if item.is_file() else shutil.rmtree(item)
            except Exception as e:
                logger.error(f"Failed to delete {item}: {e}")


@task_wrapper
def train_module(
    data_module: L.LightningDataModule, model: L.LightningModule, trainer: L.Trainer
):
    """Train the model, return validation accuracy for each epoch."""
    logger.info("Starting training with custom pruning")

    trainer.fit(model, data_module)
    val_accuracies = []

    for epoch in range(trainer.current_epoch):
        val_acc = trainer.callback_metrics.get("val_acc")
        if val_acc is not None:
            val_accuracies.append(val_acc.item())
            logger.info(f"Epoch {epoch}: val_acc={val_acc}")

    return val_accuracies


@task_wrapper
def run_test_module(
    cfg: DictConfig,
    datamodule: L.LightningDataModule,
    model: L.LightningModule,
    trainer: L.Trainer,
):
    """Test the model using the best checkpoint or current model weights."""
    logger.info("Starting testing")
    datamodule.setup(stage="test")
    test_metrics = trainer.test(
        model, datamodule, ckpt_path=load_checkpoint_if_available(cfg.ckpt_path)
    )
    logger.info(f"Test metrics: {test_metrics}")
    return test_metrics[0] if test_metrics else {}


def objective(trial: optuna.trial.Trial, cfg: DictConfig, callbacks: List[Callback]):
    """Objective function for Optuna hyperparameter tuning."""

    # Sample hyperparameters for the model
    # cfg.model.embed_dim = trial.suggest_categorical("embed_dim", [64, 128, 256])
    # cfg.model.depth = trial.suggest_int("depth", 2, 6)
    cfg.model.lr = trial.suggest_loguniform("lr", 1e-5, 1e-3)
    # cfg.model.mlp_ratio = trial.suggest_float("mlp_ratio", 1.0, 4.0)

    # Initialize data module and model
    data_module: L.LightningDataModule = hydra.utils.instantiate(cfg.data)
    model: L.LightningModule = hydra.utils.instantiate(cfg.model)

    # Set up logger
    loggers = instantiate_loggers(cfg.logger)

    # Trainer configuration with passed callbacks
    trainer = Trainer(**cfg.trainer, logger=loggers, callbacks=callbacks)

    # Train and get val_acc for each epoch
    val_accuracies = train_module(data_module, model, trainer)

    # Report validation accuracy and prune if necessary
    for epoch, val_acc in enumerate(val_accuracies):
        trial.report(val_acc, step=epoch)

        # Check if the trial should be pruned at this epoch
        if trial.should_prune():
            logger.info(f"Pruning trial at epoch {epoch}")
            raise optuna.TrialPruned()

    # Return the final validation accuracy as the objective metric
    return val_accuracies[-1] if val_accuracies else 0.0


@hydra.main(config_path="../configs", config_name="train", version_base="1.3")
def setup_trainer(cfg: DictConfig):
    logger.info(f"Config:\n{OmegaConf.to_yaml(cfg)}")

    setup_logger(
        Path(cfg.paths.log_dir)
        / ("train.log" if cfg.task_name == "train" else "test.log")
    )

    # Instantiate callbacks
    callbacks = instantiate_callbacks(cfg.callbacks)
    logger.info(f"Callbacks: {callbacks}")

    # Training phase with Optuna
    if cfg.get("train", False):
        clear_checkpoint_directory(cfg.paths.ckpt_dir)

        # Optuna study setup
        pruner = optuna.pruners.MedianPruner()
        study = optuna.create_study(
            direction="maximize", pruner=pruner, study_name="pytorch_lightning_optuna"
        )
        study.optimize(
            lambda trial: objective(trial, cfg, callbacks),
            n_trials=cfg.n_trials,
            show_progress_bar=True,
        )

        # Log best trial results and save hyperparameters
        best_trial = study.best_trial
        logger.info(f"Best trial number: {best_trial.number}")
        logger.info(f"Best trial value (val_acc): {best_trial.value}")
        best_hyperparams = best_trial.params
        logger.info(f"Best hyperparameters: {best_hyperparams}")

        # Save best hyperparameters to JSON
        best_hyperparams_path = Path(cfg.paths.ckpt_dir) / "best_hyperparams.json"
        with open(best_hyperparams_path, "w") as f:
            json.dump(best_hyperparams, f, indent=4)
        logger.info(f"Best hyperparameters saved to {best_hyperparams_path}")

        # train_done.flag file to indicate training completion in checkpoints directory
        with open(Path(cfg.paths.ckpt_dir) / "train_done.flag", "w") as f:
            f.write("Training completed successfully!")

        # upload the checkpoints to S3
        s3_handler = S3Handler(bucket_name="deep-bucket-s3")
        s3_handler.upload_folder(
            "checkpoints",
            "checkpoints",
        )

    # Testing phase with best hyperparameters
    if cfg.get("test", False):
        best_hyperparams_path = Path(cfg.paths.ckpt_dir) / "best_hyperparams.json"
        logger.info(f"Testing with best hyperparameters from {best_hyperparams_path}")

        if best_hyperparams_path.exists():
            with open(best_hyperparams_path, "r") as f:
                best_hyperparams = json.load(f)
            cfg.model.update(best_hyperparams)
            logger.info(f"Loaded best hyperparameters for testing: {best_hyperparams}")
        else:
            logger.error(
                "Best hyperparameters not found! Ensure training has run with `train=True` and saved the hyperparameters."
            )
            raise FileNotFoundError("Best hyperparameters not found!")

        # Initialize data module, model, and trainer for testing
        data_module: L.LightningDataModule = hydra.utils.instantiate(cfg.data)
        model: L.LightningModule = hydra.utils.instantiate(cfg.model)
        trainer = Trainer(**cfg.trainer, logger=instantiate_loggers(cfg.logger))
        test_metrics = run_test_module(cfg, data_module, model, trainer)
        logger.info(f"Test metrics: {test_metrics}")

    return cfg.model if not cfg.get("test", False) else test_metrics


if __name__ == "__main__":
    setup_trainer()