File size: 5,972 Bytes
0f27535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c37fc5
0f27535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import shutil
from pathlib import Path
from typing import List
import torch
import lightning as L
from lightning.pytorch.loggers import Logger, TensorBoardLogger, CSVLogger
from lightning.pytorch.callbacks import (
    ModelCheckpoint,
    EarlyStopping,
    RichModelSummary,
    RichProgressBar,
)
from dotenv import load_dotenv, find_dotenv
import hydra
from omegaconf import DictConfig, OmegaConf
from src.datamodules.catdog_datamodule import CatDogImageDataModule
from src.utils.logging_utils import setup_logger, task_wrapper
from loguru import logger
import rootutils

# Load environment variables
load_dotenv(find_dotenv(".env"))

# Setup root directory

root = rootutils.setup_root(__file__, indicator=".project-root")


def initialize_callbacks(cfg: DictConfig) -> List[L.Callback]:
    """Initialize callbacks based on configuration."""
    callback_classes = {
        "model_checkpoint": ModelCheckpoint,
        "early_stopping": EarlyStopping,
        "rich_model_summary": RichModelSummary,
        "rich_progress_bar": RichProgressBar,
    }
    return [callback_classes[name](**params) for name, params in cfg.callbacks.items()]


def initialize_loggers(cfg: DictConfig) -> List[Logger]:
    """Initialize loggers based on configuration."""
    logger_classes = {
        "tensorboard": TensorBoardLogger,
        "csv": CSVLogger,
    }
    return [logger_classes[name](**params) for name, params in cfg.logger.items()]


def load_checkpoint_if_available(ckpt_path: str) -> str:
    """Return the checkpoint path if available, else None."""
    if ckpt_path and Path(ckpt_path).exists():
        logger.info(f"Using checkpoint: {ckpt_path}")
        return ckpt_path
    logger.warning(f"Checkpoint not found at {ckpt_path}. Using current model weights.")
    return None


def clear_checkpoint_directory(ckpt_dir: str):
    """Clear checkpoint directory contents without removing the directory."""
    ckpt_dir_path = Path(ckpt_dir)
    if not ckpt_dir_path.exists():
        logger.info(f"Creating checkpoint directory: {ckpt_dir}")
        ckpt_dir_path.mkdir(parents=True, exist_ok=True)
    else:
        logger.info(f"Clearing checkpoint directory: {ckpt_dir}")
        for item in ckpt_dir_path.iterdir():
            try:
                item.unlink() if item.is_file() else shutil.rmtree(item)
            except Exception as e:
                logger.error(f"Failed to delete {item}: {e}")


@task_wrapper
def train_module(
    data_module: L.LightningDataModule, model: L.LightningModule, trainer: L.Trainer
):
    """Train the model and log metrics."""
    logger.info("Starting training")
    trainer.fit(model, data_module)
    train_metrics = trainer.callback_metrics
    train_acc = train_metrics.get("train_acc")
    val_acc = train_metrics.get("val_acc")
    logger.info(
        f"Training completed. Metrics - train_acc: {train_acc}, val_acc: {val_acc}"
    )
    return train_metrics


@task_wrapper
def run_test_module(
    cfg: DictConfig,
    datamodule: L.LightningDataModule,
    model: L.LightningModule,
    trainer: L.Trainer,
):
    """Test the model using the best checkpoint or current model weights."""
    logger.info("Starting testing")
    datamodule.setup(stage="test")
    test_metrics = trainer.test(
        model, datamodule, ckpt_path=load_checkpoint_if_available(cfg.ckpt_path)
    )
    logger.info(f"Test metrics: {test_metrics}")
    return test_metrics[0] if test_metrics else {}


@hydra.main(config_path="../configs", config_name="train", version_base="1.1")
def setup_run_trainer(cfg: DictConfig):
    """Set up and run the Trainer for training and testing."""
    # Display configuration
    logger.info(f"Config:\n{OmegaConf.to_yaml(cfg)}")

    # Initialize logger
    log_path = Path(cfg.paths.log_dir) / (
        "train.log" if cfg.task_name == "train" else "eval.log"
    )
    setup_logger(log_path)

    # Display key paths
    for path_name in [
        "root_dir",
        "data_dir",
        "log_dir",
        "ckpt_dir",
        "artifact_dir",
        "output_dir",
    ]:
        logger.info(
            f"{path_name.replace('_', ' ').capitalize()}: {cfg.paths[path_name]}"
        )

    # Initialize DataModule and Model
    logger.info(f"Instantiating datamodule <{cfg.data._target_}>")
    datamodule: L.LightningDataModule = hydra.utils.instantiate(cfg.data)
    logger.info(f"Instantiating model <{cfg.model._target_}>")
    model: L.LightningModule = hydra.utils.instantiate(cfg.model)

    # Check GPU availability and set seed for reproducibility
    logger.info("GPU available" if torch.cuda.is_available() else "No GPU available")
    L.seed_everything(cfg.seed, workers=True)

    # Set up callbacks, loggers, and Trainer
    callbacks = initialize_callbacks(cfg)
    logger.info(f"Callbacks: {callbacks}")
    loggers = initialize_loggers(cfg)
    logger.info(f"Loggers: {loggers}")
    trainer: L.Trainer = hydra.utils.instantiate(
        cfg.trainer, callbacks=callbacks, logger=loggers
    )

    # Training phase
    train_metrics = {}
    if cfg.get("train"):
        clear_checkpoint_directory(cfg.paths.ckpt_dir)
        train_metrics = train_module(datamodule, model, trainer)
        (Path(cfg.paths.ckpt_dir) / "train_done.flag").write_text(
            "Training completed.\n"
        )

    # Testing phase
    test_metrics = {}
    if cfg.get("test"):
        test_metrics = run_test_module(cfg, datamodule, model, trainer)

    # Combine metrics and extract optimization metric
    all_metrics = {**train_metrics, **test_metrics}
    optimization_metric = all_metrics.get(cfg.get("optimization_metric"), 0.0)
    (
        logger.warning(
            f"Optimization metric '{cfg.get('optimization_metric')}' not found. Defaulting to 0."
        )
        if optimization_metric == 0.0
        else logger.info(f"Optimization metric: {optimization_metric}")
    )

    return optimization_metric


if __name__ == "__main__":
    setup_run_trainer()