Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from PIL import Image | |
| from transformers import GPT2TokenizerFast, ViTImageProcessor, VisionEncoderDecoderModel,RobertaTokenizerFast | |
| import requests | |
| from PIL import Image | |
| from transformers import GPT2TokenizerFast, ViTImageProcessor, VisionEncoderDecoderModel | |
| #import torch | |
| #from transformers import BlipProcessor, BlipForConditionalGeneration | |
| def set_page_config(): | |
| st.set_page_config( | |
| page_title='Caption an Image', | |
| page_icon=':camera:', | |
| layout='wide', | |
| ) | |
| def initialize_model(): | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| # load a fine-tuned image captioning model and corresponding tokenizer and image processor | |
| model = VisionEncoderDecoderModel.from_pretrained("sourabhbargi11/caption4").to(device) | |
| tokenizer = GPT2TokenizerFast.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
| image_processor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
| return image_processor, model,tokenizer, device | |
| def upload_image(): | |
| return st.sidebar.file_uploader("Upload an image (we aren't storing anything)", type=["jpg", "jpeg", "png"]) | |
| def resize_image(image, max_width): | |
| image = image.resize((max_width, height)) | |
| if image.mode == "L": | |
| image = image.convert("RGB") | |
| return image | |
| def generate_caption(processor, model, device, image): | |
| #inputs = processor(image, return_tensors='pt').to(device) | |
| #out = model.generate(**inputs, max_new_tokens=20) | |
| #caption = processor.decode(out[0], skip_special_tokens=True) | |
| caption="im here " | |
| return caption | |
| def main(): | |
| set_page_config() | |
| st.header("Caption an Image :camera:") | |
| uploaded_image = upload_image() | |
| if uploaded_image is not None: | |
| image = Image.open(uploaded_image) | |
| image = resize_image(image, max_width=300) | |
| st.image(image, caption='Your image') | |
| with st.sidebar: | |
| st.divider() | |
| if st.sidebar.button('Generate Caption'): | |
| with st.spinner('Generating caption...'): | |
| #processor, model, device = initialize_model() | |
| #caption = generate_caption(processor, model, device, image) | |
| caption="im here man" | |
| st.header("Caption:") | |
| st.markdown(f'**{caption}**') | |
| if __name__ == '__main__': | |
| main() | |
| st.markdown(""" | |
| --- | |
| You are looking at Finetuned image Caption model """) | |