Last commit not found
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline | |
import torch | |
import pickle | |
import streamlit as st | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
# model_name = "MoritzLaurer/mDeBERTa-v3-base-mnli-xnli" | |
# tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli") | |
# with open('chapter_titles.pkl', 'rb') as file: | |
# titles_astiko = pickle.load(file) | |
labels1 = ["κληρονομικό", "ακίνητα", "διαζύγιο"] | |
labels2 = ["αποδοχή κληρονομιάς", "αποποίηση", "διαθήκη"] | |
labels3 = ["μίσθωση", "κυριότητα", "έξωση", "απλήρωτα νοίκια"] | |
# titles_astiko = ["γάμος", "αλλοδαπός", "φορολογία", "κληρονομικά", "στέγη", "οικογενειακό", "εμπορικό","κλοπή","απάτη"] | |
def classify(text): | |
output = classifier(text, labels1, multi_label=False) | |
output2 = classifier(text, labels2, multi_label=False) | |
output3 = classifier(text, labels3, multi_label=False) | |
# for i in range(len(scores)): | |
# if scores[i] > 0.99: | |
# return_labels.append(labels[i]) | |
# else: | |
# break | |
# # output = output[0:10] | |
# return return_labels | |
return output, output2, output3 | |
text = st.text_input('Enter some text:') # Input field for new text | |
if text: | |
output1, output2, output3 = classify(text) | |
st.text(output1) | |
st.text(output3) | |
st.text(output2) |