zero-shot / app.py
Last commit not found
raw
history blame
1.69 kB
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import torch
import pickle
import streamlit as st
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# model_name = "MoritzLaurer/mDeBERTa-v3-base-mnli-xnli"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForSequenceClassification.from_pretrained(model_name)
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli")
# with open('chapter_titles.pkl', 'rb') as file:
# titles_astiko = pickle.load(file)
labels1 = ["κληρονομικό", "ακίνητα", "διαζύγιο"]
labels2 = ["αποδοχή κληρονομιάς", "αποποίηση", "διαθήκη"]
labels3 = ["μίσθωση", "κυριότητα", "έξωση", "απλήρωτα νοίκια"]
# titles_astiko = ["γάμος", "αλλοδαπός", "φορολογία", "κληρονομικά", "στέγη", "οικογενειακό", "εμπορικό","κλοπή","απάτη"]
def classify(text):
output = classifier(text, labels1, multi_label=False)
output2 = classifier(text, labels2, multi_label=False)
output3 = classifier(text, labels3, multi_label=False)
# for i in range(len(scores)):
# if scores[i] > 0.99:
# return_labels.append(labels[i])
# else:
# break
# # output = output[0:10]
# return return_labels
return output, output2, output3
text = st.text_input('Enter some text:') # Input field for new text
if text:
output1, output2, output3 = classify(text)
st.text(output1)
st.text(output3)
st.text(output2)