|
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline |
|
import torch |
|
import pickle |
|
import streamlit as st |
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
|
|
|
|
|
|
|
|
|
|
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli") |
|
|
|
|
|
|
|
labels1 = ["κληρονομικό", "εμπορικό", "διαζύγιο"] |
|
labels2 = ["αποδοχή κληρονομιάς", "κληρονόμοι", "ιδιόγραφη διαθήκη"] |
|
labels3 = ["ερώτηση", "απαιτούμενα έγγραφα"] |
|
|
|
|
|
|
|
|
|
|
|
def classify(text): |
|
output = classifier(text, labels1, multi_label=False) |
|
output2 = classifier(text, labels2, multi_label=False) |
|
output3 = classifier(text, labels3, multi_label=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return output, output2, output3 |
|
|
|
|
|
text = st.text_input('Enter some text:') |
|
if text: |
|
output1, output2, output3 = classify(text) |
|
st.text(output1) |
|
st.text(output2) |
|
st.text(output3) |