soojeongcrystal commited on
Commit
9506689
·
verified ·
1 Parent(s): 2329afd

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +174 -0
app.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import numpy as np
4
+ import plotly.express as px
5
+ import plotly.graph_objects as go
6
+ from sklearn.model_selection import train_test_split
7
+ from sklearn.linear_model import LinearRegression
8
+ from sklearn.ensemble import RandomForestRegressor
9
+ from sklearn.cluster import KMeans
10
+ from sklearn.preprocessing import StandardScaler
11
+ from sklearn.metrics import mean_squared_error, r2_score
12
+ from transformers import pipeline
13
+
14
+ # Hugging Face 파이프라인 초기화
15
+ nlp = pipeline("text-classification", model="jhgan/ko-sroberta-multitask")
16
+
17
+ def process_file(file):
18
+ if file.name.endswith('.csv'):
19
+ df = pd.read_csv(file.name)
20
+ elif file.name.endswith('.xlsx'):
21
+ df = pd.read_excel(file.name)
22
+ else:
23
+ return None, "지원되지 않는 파일 형식입니다."
24
+ return df, f"{file.name} 파일이 성공적으로 업로드되었습니다."
25
+
26
+ def analyze_data(df, query, target_variable, feature_variables):
27
+ if df is None:
28
+ return "먼저 데이터 파일을 업로드해주세요.", None
29
+
30
+ result = nlp(query)[0]
31
+ intent = result['label']
32
+ confidence = result['score']
33
+
34
+ if '시계열' in query or '추세' in query:
35
+ fig = px.line(df, x=df.columns[0], y=feature_variables, title='시계열 그래프')
36
+ return f'시계열 그래프를 생성했습니다. (신뢰도: {confidence:.2f})', fig
37
+ elif '분포' in query or '히스토그램' in query:
38
+ fig = px.histogram(df, x=feature_variables[0], title='분포 히스토그램')
39
+ return f'분포 히스토그램을 생성했습니다. (신뢰도: {confidence:.2f})', fig
40
+ elif '상관관계' in query or '산점도' in query:
41
+ fig = px.scatter_matrix(df[feature_variables], title='상관관계 매트릭스')
42
+ return f'상관관계 매트릭스를 생성했습니다. (신뢰도: {confidence:.2f})', fig
43
+ elif '예측' in query or '회귀' in query:
44
+ if '랜덤' in query or '포레스트' in query:
45
+ return perform_random_forest(df, target_variable, feature_variables)
46
+ else:
47
+ return perform_regression(df, target_variable, feature_variables)
48
+ elif '군집' in query or '클러스터링' in query:
49
+ return perform_clustering(df, feature_variables)
50
+ else:
51
+ return '죄송합니다. 요청을 이해하지 못했습니다.', None
52
+
53
+ def perform_regression(df, target, features):
54
+ X = df[features]
55
+ y = df[target]
56
+
57
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
58
+
59
+ model = LinearRegression()
60
+ model.fit(X_train, y_train)
61
+
62
+ y_pred = model.predict(X_test)
63
+
64
+ mse = mean_squared_error(y_test, y_pred)
65
+ r2 = r2_score(y_test, y_pred)
66
+
67
+ fig = px.scatter(x=y_test, y=y_pred, labels={'x': '실제 값', 'y': '예측 값'}, title='실제 값 vs 예측 값 (선형 회귀)')
68
+ fig.add_trace(go.Scatter(x=[y_test.min(), y_test.max()], y=[y_test.min(), y_test.max()],
69
+ mode='lines', name='완벽한 예측'))
70
+
71
+ result_text = f"선형 회귀 분석 결과:\n"
72
+ result_text += f"평균 제곱 오차 (MSE): {mse:.4f}\n"
73
+ result_text += f"결정 계수 (R^2): {r2:.4f}\n"
74
+ result_text += "특성 중요도:\n"
75
+ for feature, importance in zip(features, model.coef_):
76
+ result_text += f"- {feature}: {importance:.4f}\n"
77
+
78
+ return result_text, fig
79
+
80
+ def perform_random_forest(df, target, features):
81
+ X = df[features]
82
+ y = df[target]
83
+
84
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
85
+
86
+ model = RandomForestRegressor(n_estimators=100, random_state=42)
87
+ model.fit(X_train, y_train)
88
+
89
+ y_pred = model.predict(X_test)
90
+
91
+ mse = mean_squared_error(y_test, y_pred)
92
+ r2 = r2_score(y_test, y_pred)
93
+
94
+ fig = px.scatter(x=y_test, y=y_pred, labels={'x': '실제 값', 'y': '예측 값'}, title='실제 값 vs 예측 값 (랜덤 포레스트)')
95
+ fig.add_trace(go.Scatter(x=[y_test.min(), y_test.max()], y=[y_test.min(), y_test.max()],
96
+ mode='lines', name='완벽한 예측'))
97
+
98
+ result_text = f"랜덤 포레스트 회귀 분석 결과:\n"
99
+ result_text += f"평균 제곱 오차 (MSE): {mse:.4f}\n"
100
+ result_text += f"결정 계수 (R^2): {r2:.4f}\n"
101
+ result_text += "특성 중요도:\n"
102
+ importances = model.feature_importances_
103
+ for feature, importance in sorted(zip(features, importances), key=lambda x: x[1], reverse=True):
104
+ result_text += f"- {feature}: {importance:.4f}\n"
105
+
106
+ return result_text, fig
107
+
108
+ def perform_clustering(df, features):
109
+ X = df[features]
110
+ scaler = StandardScaler()
111
+ X_scaled = scaler.fit_transform(X)
112
+
113
+ inertias = []
114
+ for k in range(1, 11):
115
+ kmeans = KMeans(n_clusters=k, random_state=42)
116
+ kmeans.fit(X_scaled)
117
+ inertias.append(kmeans.inertia_)
118
+
119
+ elbow_fig = px.line(x=range(1, 11), y=inertias, title='엘보�� 곡선')
120
+ elbow_fig.update_layout(xaxis_title='군집 수', yaxis_title='관성')
121
+
122
+ optimal_k = 3 # 실제로는 엘보우 곡선을 바탕으로 결정해야 함
123
+ kmeans = KMeans(n_clusters=optimal_k, random_state=42)
124
+ df['Cluster'] = kmeans.fit_predict(X_scaled)
125
+
126
+ fig = px.scatter(df, x=features[0], y=features[1], color='Cluster', title='K-means 군집 분석 결과')
127
+
128
+ result_text = f"K-means 군집 분석 결과:\n"
129
+ result_text += f"최적의 군집 수: {optimal_k}\n"
130
+ result_text += "각 군집의 크기:\n"
131
+ for i in range(optimal_k):
132
+ result_text += f"- 군집 {i}: {sum(df['Cluster'] == i)} 개\n"
133
+
134
+ return result_text, fig, elbow_fig
135
+
136
+ # Gradio 인터페이스 설정
137
+ with gr.Blocks() as demo:
138
+ gr.Markdown("# 고급 한국어 데이터 분석 앱")
139
+
140
+ with gr.Row():
141
+ file_input = gr.File(label="데이터 파일 업로드 (CSV 또는 XLSX)")
142
+ upload_output = gr.Textbox(label="업로드 상태")
143
+
144
+ query_input = gr.Textbox(label="분석 요청 입력", placeholder="예: '매출과 비용의 시계열 그래프를 보여줘' 또는 '랜덤 포레스트로 매출을 예측해줘' 또는 '데이터를 군집화해줘'")
145
+
146
+ with gr.Row():
147
+ target_variable = gr.Dropdown(label="목표 변수 선택")
148
+ feature_variables = gr.Dropdown(label="특성 변수 선택", multiselect=True)
149
+
150
+ with gr.Row():
151
+ result_text = gr.Textbox(label="분석 결과")
152
+ result_plot = gr.Plot(label="시각화")
153
+
154
+ elbow_plot = gr.Plot(label="엘보우 곡선 (군집 분석용)")
155
+
156
+ upload_button = gr.Button("파일 업로드")
157
+ analyze_button = gr.Button("분석 실행")
158
+
159
+ df = gr.State()
160
+
161
+ def update_variable_options(df):
162
+ if df is not None:
163
+ return gr.Dropdown.update(choices=df.columns), gr.Dropdown.update(choices=df.columns)
164
+ return gr.Dropdown.update(choices=[]), gr.Dropdown.update(choices=[])
165
+
166
+ upload_button.click(process_file, inputs=file_input, outputs=[df, upload_output])
167
+ df.change(update_variable_options, inputs=[df], outputs=[target_variable, feature_variables])
168
+ analyze_button.click(
169
+ analyze_data,
170
+ inputs=[df, query_input, target_variable, feature_variables],
171
+ outputs=[result_text, result_plot, elbow_plot]
172
+ )
173
+
174
+ demo.launch()