import math import random import torch from torch import nn from typing import Tuple class PadCrop(nn.Module): def __init__(self, n_samples, randomize=True): super().__init__() self.n_samples = n_samples self.randomize = randomize def __call__(self, signal): n, s = signal.shape start = 0 if (not self.randomize) else torch.randint(0, max(0, s - self.n_samples) + 1, []).item() end = start + self.n_samples output = signal.new_zeros([n, self.n_samples]) output[:, :min(s, self.n_samples)] = signal[:, start:end] return output class PadCrop_Normalized_T(nn.Module): def __init__(self, n_samples: int, sample_rate: int, randomize: bool = True): super().__init__() self.n_samples = n_samples self.sample_rate = sample_rate self.randomize = randomize def __call__(self, source: torch.Tensor) -> Tuple[torch.Tensor, float, float, int, int]: n_channels, n_samples = source.shape # If the audio is shorter than the desired length, pad it upper_bound = max(0, n_samples - self.n_samples) # If randomize is False, always start at the beginning of the audio offset = 0 if(self.randomize and n_samples > self.n_samples): offset = random.randint(0, upper_bound) # Calculate the start and end times of the chunk t_start = offset / (upper_bound + self.n_samples) t_end = (offset + self.n_samples) / (upper_bound + self.n_samples) # Create the chunk chunk = source.new_zeros([n_channels, self.n_samples]) # Copy the audio into the chunk chunk[:, :min(n_samples, self.n_samples)] = source[:, offset:offset + self.n_samples] # Calculate the start and end times of the chunk in seconds seconds_start = math.floor(offset / self.sample_rate) seconds_total = math.ceil(n_samples / self.sample_rate) # Create a mask the same length as the chunk with 1s where the audio is and 0s where it isn't padding_mask = torch.zeros([self.n_samples]) padding_mask[:min(n_samples, self.n_samples)] = 1 return ( chunk, t_start, t_end, seconds_start, seconds_total, padding_mask ) class PhaseFlipper(nn.Module): "Randomly invert the phase of a signal" def __init__(self, p=0.5): super().__init__() self.p = p def __call__(self, signal): return -signal if (random.random() < self.p) else signal class Mono(nn.Module): def __call__(self, signal): return torch.mean(signal, dim=0, keepdims=True) if len(signal.shape) > 1 else signal class Stereo(nn.Module): def __call__(self, signal): signal_shape = signal.shape # Check if it's mono if len(signal_shape) == 1: # s -> 2, s signal = signal.unsqueeze(0).repeat(2, 1) elif len(signal_shape) == 2: if signal_shape[0] == 1: #1, s -> 2, s signal = signal.repeat(2, 1) elif signal_shape[0] > 2: #?, s -> 2,s signal = signal[:2, :] return signal