sonalkum's picture
stable
9172422
raw
history blame
3.4 kB
import torch
from safetensors.torch import load_file
from torch.nn.utils import remove_weight_norm
def load_ckpt_state_dict(ckpt_path):
if ckpt_path.endswith(".safetensors"):
state_dict = load_file(ckpt_path)
else:
state_dict = torch.load(ckpt_path, map_location="cpu")["state_dict"]
return state_dict
def remove_weight_norm_from_model(model):
for module in model.modules():
if hasattr(module, "weight"):
print(f"Removing weight norm from {module}")
remove_weight_norm(module)
return model
# Sampling functions copied from https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/utils/utils.py under MIT license
# License can be found in LICENSES/LICENSE_META.txt
def multinomial(input: torch.Tensor, num_samples: int, replacement=False, *, generator=None):
"""torch.multinomial with arbitrary number of dimensions, and number of candidates on the last dimension.
Args:
input (torch.Tensor): The input tensor containing probabilities.
num_samples (int): Number of samples to draw.
replacement (bool): Whether to draw with replacement or not.
Keywords args:
generator (torch.Generator): A pseudorandom number generator for sampling.
Returns:
torch.Tensor: Last dimension contains num_samples indices
sampled from the multinomial probability distribution
located in the last dimension of tensor input.
"""
if num_samples == 1:
q = torch.empty_like(input).exponential_(1, generator=generator)
return torch.argmax(input / q, dim=-1, keepdim=True).to(torch.int64)
input_ = input.reshape(-1, input.shape[-1])
output_ = torch.multinomial(input_, num_samples=num_samples, replacement=replacement, generator=generator)
output = output_.reshape(*list(input.shape[:-1]), -1)
return output
def sample_top_k(probs: torch.Tensor, k: int) -> torch.Tensor:
"""Sample next token from top K values along the last dimension of the input probs tensor.
Args:
probs (torch.Tensor): Input probabilities with token candidates on the last dimension.
k (int): The k in “top-k”.
Returns:
torch.Tensor: Sampled tokens.
"""
top_k_value, _ = torch.topk(probs, k, dim=-1)
min_value_top_k = top_k_value[..., [-1]]
probs *= (probs >= min_value_top_k).float()
probs.div_(probs.sum(dim=-1, keepdim=True))
next_token = multinomial(probs, num_samples=1)
return next_token
def sample_top_p(probs: torch.Tensor, p: float) -> torch.Tensor:
"""Sample next token from top P probabilities along the last dimension of the input probs tensor.
Args:
probs (torch.Tensor): Input probabilities with token candidates on the last dimension.
p (int): The p in “top-p”.
Returns:
torch.Tensor: Sampled tokens.
"""
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > p
probs_sort *= (~mask).float()
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
next_token = multinomial(probs_sort, num_samples=1)
next_token = torch.gather(probs_idx, -1, next_token)
return next_token
def next_power_of_two(n):
return 2 ** (n - 1).bit_length()
def next_multiple_of_64(n):
return ((n + 63) // 64) * 64