Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from safetensors.torch import load_file | |
from torch.nn.utils import remove_weight_norm | |
def load_ckpt_state_dict(ckpt_path): | |
if ckpt_path.endswith(".safetensors"): | |
state_dict = load_file(ckpt_path) | |
else: | |
state_dict = torch.load(ckpt_path, map_location="cpu")["state_dict"] | |
return state_dict | |
def remove_weight_norm_from_model(model): | |
for module in model.modules(): | |
if hasattr(module, "weight"): | |
print(f"Removing weight norm from {module}") | |
remove_weight_norm(module) | |
return model | |
# Sampling functions copied from https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/utils/utils.py under MIT license | |
# License can be found in LICENSES/LICENSE_META.txt | |
def multinomial(input: torch.Tensor, num_samples: int, replacement=False, *, generator=None): | |
"""torch.multinomial with arbitrary number of dimensions, and number of candidates on the last dimension. | |
Args: | |
input (torch.Tensor): The input tensor containing probabilities. | |
num_samples (int): Number of samples to draw. | |
replacement (bool): Whether to draw with replacement or not. | |
Keywords args: | |
generator (torch.Generator): A pseudorandom number generator for sampling. | |
Returns: | |
torch.Tensor: Last dimension contains num_samples indices | |
sampled from the multinomial probability distribution | |
located in the last dimension of tensor input. | |
""" | |
if num_samples == 1: | |
q = torch.empty_like(input).exponential_(1, generator=generator) | |
return torch.argmax(input / q, dim=-1, keepdim=True).to(torch.int64) | |
input_ = input.reshape(-1, input.shape[-1]) | |
output_ = torch.multinomial(input_, num_samples=num_samples, replacement=replacement, generator=generator) | |
output = output_.reshape(*list(input.shape[:-1]), -1) | |
return output | |
def sample_top_k(probs: torch.Tensor, k: int) -> torch.Tensor: | |
"""Sample next token from top K values along the last dimension of the input probs tensor. | |
Args: | |
probs (torch.Tensor): Input probabilities with token candidates on the last dimension. | |
k (int): The k in “top-k”. | |
Returns: | |
torch.Tensor: Sampled tokens. | |
""" | |
top_k_value, _ = torch.topk(probs, k, dim=-1) | |
min_value_top_k = top_k_value[..., [-1]] | |
probs *= (probs >= min_value_top_k).float() | |
probs.div_(probs.sum(dim=-1, keepdim=True)) | |
next_token = multinomial(probs, num_samples=1) | |
return next_token | |
def sample_top_p(probs: torch.Tensor, p: float) -> torch.Tensor: | |
"""Sample next token from top P probabilities along the last dimension of the input probs tensor. | |
Args: | |
probs (torch.Tensor): Input probabilities with token candidates on the last dimension. | |
p (int): The p in “top-p”. | |
Returns: | |
torch.Tensor: Sampled tokens. | |
""" | |
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) | |
probs_sum = torch.cumsum(probs_sort, dim=-1) | |
mask = probs_sum - probs_sort > p | |
probs_sort *= (~mask).float() | |
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) | |
next_token = multinomial(probs_sort, num_samples=1) | |
next_token = torch.gather(probs_idx, -1, next_token) | |
return next_token | |
def next_power_of_two(n): | |
return 2 ** (n - 1).bit_length() | |
def next_multiple_of_64(n): | |
return ((n + 63) // 64) * 64 |