sonalkum's picture
stable
9172422
raw
history blame
17.6 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from functools import reduce
import typing as tp
from einops import rearrange
from audiotools import AudioSignal, STFTParams
from dac.model.discriminator import WNConv1d, WNConv2d
def get_hinge_losses(score_real, score_fake):
gen_loss = -score_fake.mean()
dis_loss = torch.relu(1 - score_real).mean() + torch.relu(1 + score_fake).mean()
return dis_loss, gen_loss
class EncodecDiscriminator(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
from encodec.msstftd import MultiScaleSTFTDiscriminator
self.discriminators = MultiScaleSTFTDiscriminator(*args, **kwargs)
def forward(self, x):
logits, features = self.discriminators(x)
return logits, features
def loss(self, x, y):
feature_matching_distance = 0.
logits_true, feature_true = self.forward(x)
logits_fake, feature_fake = self.forward(y)
dis_loss = torch.tensor(0.)
adv_loss = torch.tensor(0.)
for i, (scale_true, scale_fake) in enumerate(zip(feature_true, feature_fake)):
feature_matching_distance = feature_matching_distance + sum(
map(
lambda x, y: abs(x - y).mean(),
scale_true,
scale_fake,
)) / len(scale_true)
_dis, _adv = get_hinge_losses(
logits_true[i],
logits_fake[i],
)
dis_loss = dis_loss + _dis
adv_loss = adv_loss + _adv
return dis_loss, adv_loss, feature_matching_distance
# Discriminators from oobleck
IndividualDiscriminatorOut = tp.Tuple[torch.Tensor, tp.Sequence[torch.Tensor]]
TensorDict = tp.Dict[str, torch.Tensor]
class SharedDiscriminatorConvNet(nn.Module):
def __init__(
self,
in_size: int,
convolution: tp.Union[nn.Conv1d, nn.Conv2d],
out_size: int = 1,
capacity: int = 32,
n_layers: int = 4,
kernel_size: int = 15,
stride: int = 4,
activation: tp.Callable[[], nn.Module] = lambda: nn.SiLU(),
normalization: tp.Callable[[nn.Module], nn.Module] = torch.nn.utils.weight_norm,
) -> None:
super().__init__()
channels = [in_size]
channels += list(capacity * 2**np.arange(n_layers))
if isinstance(stride, int):
stride = n_layers * [stride]
net = []
for i in range(n_layers):
if isinstance(kernel_size, int):
pad = kernel_size // 2
s = stride[i]
else:
pad = kernel_size[0] // 2
s = (stride[i], 1)
net.append(
normalization(
convolution(
channels[i],
channels[i + 1],
kernel_size,
stride=s,
padding=pad,
)))
net.append(activation())
net.append(convolution(channels[-1], out_size, 1))
self.net = nn.ModuleList(net)
def forward(self, x) -> IndividualDiscriminatorOut:
features = []
for layer in self.net:
x = layer(x)
if isinstance(layer, nn.modules.conv._ConvNd):
features.append(x)
score = x.reshape(x.shape[0], -1).mean(-1)
return score, features
class MultiScaleDiscriminator(nn.Module):
def __init__(self,
in_channels: int,
n_scales: int,
**conv_kwargs) -> None:
super().__init__()
layers = []
for _ in range(n_scales):
layers.append(SharedDiscriminatorConvNet(in_channels, nn.Conv1d, **conv_kwargs))
self.layers = nn.ModuleList(layers)
def forward(self, x: torch.Tensor) -> IndividualDiscriminatorOut:
score = 0
features = []
for layer in self.layers:
s, f = layer(x)
score = score + s
features.extend(f)
x = nn.functional.avg_pool1d(x, 2)
return score, features
class MultiPeriodDiscriminator(nn.Module):
def __init__(self,
in_channels: int,
periods: tp.Sequence[int],
**conv_kwargs) -> None:
super().__init__()
layers = []
self.periods = periods
for _ in periods:
layers.append(SharedDiscriminatorConvNet(in_channels, nn.Conv2d, **conv_kwargs))
self.layers = nn.ModuleList(layers)
def forward(self, x: torch.Tensor) -> IndividualDiscriminatorOut:
score = 0
features = []
for layer, n in zip(self.layers, self.periods):
s, f = layer(self.fold(x, n))
score = score + s
features.extend(f)
return score, features
def fold(self, x: torch.Tensor, n: int) -> torch.Tensor:
pad = (n - (x.shape[-1] % n)) % n
x = nn.functional.pad(x, (0, pad))
return x.reshape(*x.shape[:2], -1, n)
class MultiDiscriminator(nn.Module):
"""
Individual discriminators should take a single tensor as input (NxB C T) and
return a tuple composed of a score tensor (NxB) and a Sequence of Features
Sequence[NxB C' T'].
"""
def __init__(self, discriminator_list: tp.Sequence[nn.Module],
keys: tp.Sequence[str]) -> None:
super().__init__()
self.discriminators = nn.ModuleList(discriminator_list)
self.keys = keys
def unpack_tensor_to_dict(self, features: torch.Tensor) -> TensorDict:
features = features.chunk(len(self.keys), 0)
return {k: features[i] for i, k in enumerate(self.keys)}
@staticmethod
def concat_dicts(dict_a, dict_b):
out_dict = {}
keys = set(list(dict_a.keys()) + list(dict_b.keys()))
for k in keys:
out_dict[k] = []
if k in dict_a:
if isinstance(dict_a[k], list):
out_dict[k].extend(dict_a[k])
else:
out_dict[k].append(dict_a[k])
if k in dict_b:
if isinstance(dict_b[k], list):
out_dict[k].extend(dict_b[k])
else:
out_dict[k].append(dict_b[k])
return out_dict
@staticmethod
def sum_dicts(dict_a, dict_b):
out_dict = {}
keys = set(list(dict_a.keys()) + list(dict_b.keys()))
for k in keys:
out_dict[k] = 0.
if k in dict_a:
out_dict[k] = out_dict[k] + dict_a[k]
if k in dict_b:
out_dict[k] = out_dict[k] + dict_b[k]
return out_dict
def forward(self, inputs: TensorDict) -> TensorDict:
discriminator_input = torch.cat([inputs[k] for k in self.keys], 0)
all_scores = []
all_features = []
for discriminator in self.discriminators:
score, features = discriminator(discriminator_input)
scores = self.unpack_tensor_to_dict(score)
scores = {f"score_{k}": scores[k] for k in scores.keys()}
all_scores.append(scores)
features = map(self.unpack_tensor_to_dict, features)
features = reduce(self.concat_dicts, features)
features = {f"features_{k}": features[k] for k in features.keys()}
all_features.append(features)
all_scores = reduce(self.sum_dicts, all_scores)
all_features = reduce(self.concat_dicts, all_features)
inputs.update(all_scores)
inputs.update(all_features)
return inputs
class OobleckDiscriminator(nn.Module):
def __init__(
self,
in_channels=1,
):
super().__init__()
multi_scale_discriminator = MultiScaleDiscriminator(
in_channels=in_channels,
n_scales=3,
)
multi_period_discriminator = MultiPeriodDiscriminator(
in_channels=in_channels,
periods=[2, 3, 5, 7, 11]
)
# multi_resolution_discriminator = MultiScaleSTFTDiscriminator(
# filters=32,
# in_channels = in_channels,
# out_channels = 1,
# n_ffts = [2048, 1024, 512, 256, 128],
# hop_lengths = [512, 256, 128, 64, 32],
# win_lengths = [2048, 1024, 512, 256, 128]
# )
self.multi_discriminator = MultiDiscriminator(
[multi_scale_discriminator, multi_period_discriminator], #, multi_resolution_discriminator],
["reals", "fakes"]
)
def loss(self, reals, fakes):
inputs = {
"reals": reals,
"fakes": fakes,
}
inputs = self.multi_discriminator(inputs)
scores_real = inputs["score_reals"]
scores_fake = inputs["score_fakes"]
features_real = inputs["features_reals"]
features_fake = inputs["features_fakes"]
dis_loss, gen_loss = get_hinge_losses(scores_real, scores_fake)
feature_matching_distance = torch.tensor(0.)
for _, (scale_real, scale_fake) in enumerate(zip(features_real, features_fake)):
feature_matching_distance = feature_matching_distance + sum(
map(
lambda real, fake: abs(real - fake).mean(),
scale_real,
scale_fake,
)) / len(scale_real)
return dis_loss, gen_loss, feature_matching_distance
## Discriminators from Descript Audio Codec repo
## Copied and modified under MIT license, see LICENSES/LICENSE_DESCRIPT.txt
class MPD(nn.Module):
def __init__(self, period, channels=1):
super().__init__()
self.period = period
self.convs = nn.ModuleList(
[
WNConv2d(channels, 32, (5, 1), (3, 1), padding=(2, 0)),
WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)),
WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)),
WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)),
WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)),
]
)
self.conv_post = WNConv2d(
1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False
)
def pad_to_period(self, x):
t = x.shape[-1]
x = F.pad(x, (0, self.period - t % self.period), mode="reflect")
return x
def forward(self, x):
fmap = []
x = self.pad_to_period(x)
x = rearrange(x, "b c (l p) -> b c l p", p=self.period)
for layer in self.convs:
x = layer(x)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
return fmap
class MSD(nn.Module):
def __init__(self, rate: int = 1, sample_rate: int = 44100, channels=1):
super().__init__()
self.convs = nn.ModuleList(
[
WNConv1d(channels, 16, 15, 1, padding=7),
WNConv1d(16, 64, 41, 4, groups=4, padding=20),
WNConv1d(64, 256, 41, 4, groups=16, padding=20),
WNConv1d(256, 1024, 41, 4, groups=64, padding=20),
WNConv1d(1024, 1024, 41, 4, groups=256, padding=20),
WNConv1d(1024, 1024, 5, 1, padding=2),
]
)
self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False)
self.sample_rate = sample_rate
self.rate = rate
def forward(self, x):
x = AudioSignal(x, self.sample_rate)
x.resample(self.sample_rate // self.rate)
x = x.audio_data
fmap = []
for l in self.convs:
x = l(x)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
return fmap
BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)]
class MRD(nn.Module):
def __init__(
self,
window_length: int,
hop_factor: float = 0.25,
sample_rate: int = 44100,
bands: list = BANDS,
channels: int = 1
):
"""Complex multi-band spectrogram discriminator.
Parameters
----------
window_length : int
Window length of STFT.
hop_factor : float, optional
Hop factor of the STFT, defaults to ``0.25 * window_length``.
sample_rate : int, optional
Sampling rate of audio in Hz, by default 44100
bands : list, optional
Bands to run discriminator over.
"""
super().__init__()
self.window_length = window_length
self.hop_factor = hop_factor
self.sample_rate = sample_rate
self.stft_params = STFTParams(
window_length=window_length,
hop_length=int(window_length * hop_factor),
match_stride=True,
)
self.channels = channels
n_fft = window_length // 2 + 1
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
self.bands = bands
ch = 32
convs = lambda: nn.ModuleList(
[
WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)),
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)),
]
)
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False)
def spectrogram(self, x):
x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params)
x = torch.view_as_real(x.stft())
x = rearrange(x, "b ch f t c -> (b ch) c t f", ch=self.channels)
# Split into bands
x_bands = [x[..., b[0] : b[1]] for b in self.bands]
return x_bands
def forward(self, x):
x_bands = self.spectrogram(x)
fmap = []
x = []
for band, stack in zip(x_bands, self.band_convs):
for layer in stack:
band = layer(band)
fmap.append(band)
x.append(band)
x = torch.cat(x, dim=-1)
x = self.conv_post(x)
fmap.append(x)
return fmap
class DACDiscriminator(nn.Module):
def __init__(
self,
channels: int = 1,
rates: list = [],
periods: list = [2, 3, 5, 7, 11],
fft_sizes: list = [2048, 1024, 512],
sample_rate: int = 44100,
bands: list = BANDS,
):
"""Discriminator that combines multiple discriminators.
Parameters
----------
rates : list, optional
sampling rates (in Hz) to run MSD at, by default []
If empty, MSD is not used.
periods : list, optional
periods (of samples) to run MPD at, by default [2, 3, 5, 7, 11]
fft_sizes : list, optional
Window sizes of the FFT to run MRD at, by default [2048, 1024, 512]
sample_rate : int, optional
Sampling rate of audio in Hz, by default 44100
bands : list, optional
Bands to run MRD at, by default `BANDS`
"""
super().__init__()
discs = []
discs += [MPD(p, channels=channels) for p in periods]
discs += [MSD(r, sample_rate=sample_rate, channels=channels) for r in rates]
discs += [MRD(f, sample_rate=sample_rate, bands=bands, channels=channels) for f in fft_sizes]
self.discriminators = nn.ModuleList(discs)
def preprocess(self, y):
# Remove DC offset
y = y - y.mean(dim=-1, keepdims=True)
# Peak normalize the volume of input audio
y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
return y
def forward(self, x):
x = self.preprocess(x)
fmaps = [d(x) for d in self.discriminators]
return fmaps
class DACGANLoss(nn.Module):
"""
Computes a discriminator loss, given a discriminator on
generated waveforms/spectrograms compared to ground truth
waveforms/spectrograms. Computes the loss for both the
discriminator and the generator in separate functions.
"""
def __init__(self, **discriminator_kwargs):
super().__init__()
self.discriminator = DACDiscriminator(**discriminator_kwargs)
def forward(self, fake, real):
d_fake = self.discriminator(fake)
d_real = self.discriminator(real)
return d_fake, d_real
def discriminator_loss(self, fake, real):
d_fake, d_real = self.forward(fake.clone().detach(), real)
loss_d = 0
for x_fake, x_real in zip(d_fake, d_real):
loss_d += torch.mean(x_fake[-1] ** 2)
loss_d += torch.mean((1 - x_real[-1]) ** 2)
return loss_d
def generator_loss(self, fake, real):
d_fake, d_real = self.forward(fake, real)
loss_g = 0
for x_fake in d_fake:
loss_g += torch.mean((1 - x_fake[-1]) ** 2)
loss_feature = 0
for i in range(len(d_fake)):
for j in range(len(d_fake[i]) - 1):
loss_feature += F.l1_loss(d_fake[i][j], d_real[i][j].detach())
return loss_g, loss_feature
def loss(self, fake, real):
gen_loss, feature_distance = self.generator_loss(fake, real)
dis_loss = self.discriminator_loss(fake, real)
return dis_loss, gen_loss, feature_distance