Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
from functools import reduce | |
import typing as tp | |
from einops import rearrange | |
from audiotools import AudioSignal, STFTParams | |
from dac.model.discriminator import WNConv1d, WNConv2d | |
def get_hinge_losses(score_real, score_fake): | |
gen_loss = -score_fake.mean() | |
dis_loss = torch.relu(1 - score_real).mean() + torch.relu(1 + score_fake).mean() | |
return dis_loss, gen_loss | |
class EncodecDiscriminator(nn.Module): | |
def __init__(self, *args, **kwargs): | |
super().__init__() | |
from encodec.msstftd import MultiScaleSTFTDiscriminator | |
self.discriminators = MultiScaleSTFTDiscriminator(*args, **kwargs) | |
def forward(self, x): | |
logits, features = self.discriminators(x) | |
return logits, features | |
def loss(self, x, y): | |
feature_matching_distance = 0. | |
logits_true, feature_true = self.forward(x) | |
logits_fake, feature_fake = self.forward(y) | |
dis_loss = torch.tensor(0.) | |
adv_loss = torch.tensor(0.) | |
for i, (scale_true, scale_fake) in enumerate(zip(feature_true, feature_fake)): | |
feature_matching_distance = feature_matching_distance + sum( | |
map( | |
lambda x, y: abs(x - y).mean(), | |
scale_true, | |
scale_fake, | |
)) / len(scale_true) | |
_dis, _adv = get_hinge_losses( | |
logits_true[i], | |
logits_fake[i], | |
) | |
dis_loss = dis_loss + _dis | |
adv_loss = adv_loss + _adv | |
return dis_loss, adv_loss, feature_matching_distance | |
# Discriminators from oobleck | |
IndividualDiscriminatorOut = tp.Tuple[torch.Tensor, tp.Sequence[torch.Tensor]] | |
TensorDict = tp.Dict[str, torch.Tensor] | |
class SharedDiscriminatorConvNet(nn.Module): | |
def __init__( | |
self, | |
in_size: int, | |
convolution: tp.Union[nn.Conv1d, nn.Conv2d], | |
out_size: int = 1, | |
capacity: int = 32, | |
n_layers: int = 4, | |
kernel_size: int = 15, | |
stride: int = 4, | |
activation: tp.Callable[[], nn.Module] = lambda: nn.SiLU(), | |
normalization: tp.Callable[[nn.Module], nn.Module] = torch.nn.utils.weight_norm, | |
) -> None: | |
super().__init__() | |
channels = [in_size] | |
channels += list(capacity * 2**np.arange(n_layers)) | |
if isinstance(stride, int): | |
stride = n_layers * [stride] | |
net = [] | |
for i in range(n_layers): | |
if isinstance(kernel_size, int): | |
pad = kernel_size // 2 | |
s = stride[i] | |
else: | |
pad = kernel_size[0] // 2 | |
s = (stride[i], 1) | |
net.append( | |
normalization( | |
convolution( | |
channels[i], | |
channels[i + 1], | |
kernel_size, | |
stride=s, | |
padding=pad, | |
))) | |
net.append(activation()) | |
net.append(convolution(channels[-1], out_size, 1)) | |
self.net = nn.ModuleList(net) | |
def forward(self, x) -> IndividualDiscriminatorOut: | |
features = [] | |
for layer in self.net: | |
x = layer(x) | |
if isinstance(layer, nn.modules.conv._ConvNd): | |
features.append(x) | |
score = x.reshape(x.shape[0], -1).mean(-1) | |
return score, features | |
class MultiScaleDiscriminator(nn.Module): | |
def __init__(self, | |
in_channels: int, | |
n_scales: int, | |
**conv_kwargs) -> None: | |
super().__init__() | |
layers = [] | |
for _ in range(n_scales): | |
layers.append(SharedDiscriminatorConvNet(in_channels, nn.Conv1d, **conv_kwargs)) | |
self.layers = nn.ModuleList(layers) | |
def forward(self, x: torch.Tensor) -> IndividualDiscriminatorOut: | |
score = 0 | |
features = [] | |
for layer in self.layers: | |
s, f = layer(x) | |
score = score + s | |
features.extend(f) | |
x = nn.functional.avg_pool1d(x, 2) | |
return score, features | |
class MultiPeriodDiscriminator(nn.Module): | |
def __init__(self, | |
in_channels: int, | |
periods: tp.Sequence[int], | |
**conv_kwargs) -> None: | |
super().__init__() | |
layers = [] | |
self.periods = periods | |
for _ in periods: | |
layers.append(SharedDiscriminatorConvNet(in_channels, nn.Conv2d, **conv_kwargs)) | |
self.layers = nn.ModuleList(layers) | |
def forward(self, x: torch.Tensor) -> IndividualDiscriminatorOut: | |
score = 0 | |
features = [] | |
for layer, n in zip(self.layers, self.periods): | |
s, f = layer(self.fold(x, n)) | |
score = score + s | |
features.extend(f) | |
return score, features | |
def fold(self, x: torch.Tensor, n: int) -> torch.Tensor: | |
pad = (n - (x.shape[-1] % n)) % n | |
x = nn.functional.pad(x, (0, pad)) | |
return x.reshape(*x.shape[:2], -1, n) | |
class MultiDiscriminator(nn.Module): | |
""" | |
Individual discriminators should take a single tensor as input (NxB C T) and | |
return a tuple composed of a score tensor (NxB) and a Sequence of Features | |
Sequence[NxB C' T']. | |
""" | |
def __init__(self, discriminator_list: tp.Sequence[nn.Module], | |
keys: tp.Sequence[str]) -> None: | |
super().__init__() | |
self.discriminators = nn.ModuleList(discriminator_list) | |
self.keys = keys | |
def unpack_tensor_to_dict(self, features: torch.Tensor) -> TensorDict: | |
features = features.chunk(len(self.keys), 0) | |
return {k: features[i] for i, k in enumerate(self.keys)} | |
def concat_dicts(dict_a, dict_b): | |
out_dict = {} | |
keys = set(list(dict_a.keys()) + list(dict_b.keys())) | |
for k in keys: | |
out_dict[k] = [] | |
if k in dict_a: | |
if isinstance(dict_a[k], list): | |
out_dict[k].extend(dict_a[k]) | |
else: | |
out_dict[k].append(dict_a[k]) | |
if k in dict_b: | |
if isinstance(dict_b[k], list): | |
out_dict[k].extend(dict_b[k]) | |
else: | |
out_dict[k].append(dict_b[k]) | |
return out_dict | |
def sum_dicts(dict_a, dict_b): | |
out_dict = {} | |
keys = set(list(dict_a.keys()) + list(dict_b.keys())) | |
for k in keys: | |
out_dict[k] = 0. | |
if k in dict_a: | |
out_dict[k] = out_dict[k] + dict_a[k] | |
if k in dict_b: | |
out_dict[k] = out_dict[k] + dict_b[k] | |
return out_dict | |
def forward(self, inputs: TensorDict) -> TensorDict: | |
discriminator_input = torch.cat([inputs[k] for k in self.keys], 0) | |
all_scores = [] | |
all_features = [] | |
for discriminator in self.discriminators: | |
score, features = discriminator(discriminator_input) | |
scores = self.unpack_tensor_to_dict(score) | |
scores = {f"score_{k}": scores[k] for k in scores.keys()} | |
all_scores.append(scores) | |
features = map(self.unpack_tensor_to_dict, features) | |
features = reduce(self.concat_dicts, features) | |
features = {f"features_{k}": features[k] for k in features.keys()} | |
all_features.append(features) | |
all_scores = reduce(self.sum_dicts, all_scores) | |
all_features = reduce(self.concat_dicts, all_features) | |
inputs.update(all_scores) | |
inputs.update(all_features) | |
return inputs | |
class OobleckDiscriminator(nn.Module): | |
def __init__( | |
self, | |
in_channels=1, | |
): | |
super().__init__() | |
multi_scale_discriminator = MultiScaleDiscriminator( | |
in_channels=in_channels, | |
n_scales=3, | |
) | |
multi_period_discriminator = MultiPeriodDiscriminator( | |
in_channels=in_channels, | |
periods=[2, 3, 5, 7, 11] | |
) | |
# multi_resolution_discriminator = MultiScaleSTFTDiscriminator( | |
# filters=32, | |
# in_channels = in_channels, | |
# out_channels = 1, | |
# n_ffts = [2048, 1024, 512, 256, 128], | |
# hop_lengths = [512, 256, 128, 64, 32], | |
# win_lengths = [2048, 1024, 512, 256, 128] | |
# ) | |
self.multi_discriminator = MultiDiscriminator( | |
[multi_scale_discriminator, multi_period_discriminator], #, multi_resolution_discriminator], | |
["reals", "fakes"] | |
) | |
def loss(self, reals, fakes): | |
inputs = { | |
"reals": reals, | |
"fakes": fakes, | |
} | |
inputs = self.multi_discriminator(inputs) | |
scores_real = inputs["score_reals"] | |
scores_fake = inputs["score_fakes"] | |
features_real = inputs["features_reals"] | |
features_fake = inputs["features_fakes"] | |
dis_loss, gen_loss = get_hinge_losses(scores_real, scores_fake) | |
feature_matching_distance = torch.tensor(0.) | |
for _, (scale_real, scale_fake) in enumerate(zip(features_real, features_fake)): | |
feature_matching_distance = feature_matching_distance + sum( | |
map( | |
lambda real, fake: abs(real - fake).mean(), | |
scale_real, | |
scale_fake, | |
)) / len(scale_real) | |
return dis_loss, gen_loss, feature_matching_distance | |
## Discriminators from Descript Audio Codec repo | |
## Copied and modified under MIT license, see LICENSES/LICENSE_DESCRIPT.txt | |
class MPD(nn.Module): | |
def __init__(self, period, channels=1): | |
super().__init__() | |
self.period = period | |
self.convs = nn.ModuleList( | |
[ | |
WNConv2d(channels, 32, (5, 1), (3, 1), padding=(2, 0)), | |
WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)), | |
WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)), | |
WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)), | |
WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)), | |
] | |
) | |
self.conv_post = WNConv2d( | |
1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False | |
) | |
def pad_to_period(self, x): | |
t = x.shape[-1] | |
x = F.pad(x, (0, self.period - t % self.period), mode="reflect") | |
return x | |
def forward(self, x): | |
fmap = [] | |
x = self.pad_to_period(x) | |
x = rearrange(x, "b c (l p) -> b c l p", p=self.period) | |
for layer in self.convs: | |
x = layer(x) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
return fmap | |
class MSD(nn.Module): | |
def __init__(self, rate: int = 1, sample_rate: int = 44100, channels=1): | |
super().__init__() | |
self.convs = nn.ModuleList( | |
[ | |
WNConv1d(channels, 16, 15, 1, padding=7), | |
WNConv1d(16, 64, 41, 4, groups=4, padding=20), | |
WNConv1d(64, 256, 41, 4, groups=16, padding=20), | |
WNConv1d(256, 1024, 41, 4, groups=64, padding=20), | |
WNConv1d(1024, 1024, 41, 4, groups=256, padding=20), | |
WNConv1d(1024, 1024, 5, 1, padding=2), | |
] | |
) | |
self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False) | |
self.sample_rate = sample_rate | |
self.rate = rate | |
def forward(self, x): | |
x = AudioSignal(x, self.sample_rate) | |
x.resample(self.sample_rate // self.rate) | |
x = x.audio_data | |
fmap = [] | |
for l in self.convs: | |
x = l(x) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
return fmap | |
BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)] | |
class MRD(nn.Module): | |
def __init__( | |
self, | |
window_length: int, | |
hop_factor: float = 0.25, | |
sample_rate: int = 44100, | |
bands: list = BANDS, | |
channels: int = 1 | |
): | |
"""Complex multi-band spectrogram discriminator. | |
Parameters | |
---------- | |
window_length : int | |
Window length of STFT. | |
hop_factor : float, optional | |
Hop factor of the STFT, defaults to ``0.25 * window_length``. | |
sample_rate : int, optional | |
Sampling rate of audio in Hz, by default 44100 | |
bands : list, optional | |
Bands to run discriminator over. | |
""" | |
super().__init__() | |
self.window_length = window_length | |
self.hop_factor = hop_factor | |
self.sample_rate = sample_rate | |
self.stft_params = STFTParams( | |
window_length=window_length, | |
hop_length=int(window_length * hop_factor), | |
match_stride=True, | |
) | |
self.channels = channels | |
n_fft = window_length // 2 + 1 | |
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands] | |
self.bands = bands | |
ch = 32 | |
convs = lambda: nn.ModuleList( | |
[ | |
WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)), | |
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)), | |
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)), | |
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)), | |
WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)), | |
] | |
) | |
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))]) | |
self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False) | |
def spectrogram(self, x): | |
x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params) | |
x = torch.view_as_real(x.stft()) | |
x = rearrange(x, "b ch f t c -> (b ch) c t f", ch=self.channels) | |
# Split into bands | |
x_bands = [x[..., b[0] : b[1]] for b in self.bands] | |
return x_bands | |
def forward(self, x): | |
x_bands = self.spectrogram(x) | |
fmap = [] | |
x = [] | |
for band, stack in zip(x_bands, self.band_convs): | |
for layer in stack: | |
band = layer(band) | |
fmap.append(band) | |
x.append(band) | |
x = torch.cat(x, dim=-1) | |
x = self.conv_post(x) | |
fmap.append(x) | |
return fmap | |
class DACDiscriminator(nn.Module): | |
def __init__( | |
self, | |
channels: int = 1, | |
rates: list = [], | |
periods: list = [2, 3, 5, 7, 11], | |
fft_sizes: list = [2048, 1024, 512], | |
sample_rate: int = 44100, | |
bands: list = BANDS, | |
): | |
"""Discriminator that combines multiple discriminators. | |
Parameters | |
---------- | |
rates : list, optional | |
sampling rates (in Hz) to run MSD at, by default [] | |
If empty, MSD is not used. | |
periods : list, optional | |
periods (of samples) to run MPD at, by default [2, 3, 5, 7, 11] | |
fft_sizes : list, optional | |
Window sizes of the FFT to run MRD at, by default [2048, 1024, 512] | |
sample_rate : int, optional | |
Sampling rate of audio in Hz, by default 44100 | |
bands : list, optional | |
Bands to run MRD at, by default `BANDS` | |
""" | |
super().__init__() | |
discs = [] | |
discs += [MPD(p, channels=channels) for p in periods] | |
discs += [MSD(r, sample_rate=sample_rate, channels=channels) for r in rates] | |
discs += [MRD(f, sample_rate=sample_rate, bands=bands, channels=channels) for f in fft_sizes] | |
self.discriminators = nn.ModuleList(discs) | |
def preprocess(self, y): | |
# Remove DC offset | |
y = y - y.mean(dim=-1, keepdims=True) | |
# Peak normalize the volume of input audio | |
y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9) | |
return y | |
def forward(self, x): | |
x = self.preprocess(x) | |
fmaps = [d(x) for d in self.discriminators] | |
return fmaps | |
class DACGANLoss(nn.Module): | |
""" | |
Computes a discriminator loss, given a discriminator on | |
generated waveforms/spectrograms compared to ground truth | |
waveforms/spectrograms. Computes the loss for both the | |
discriminator and the generator in separate functions. | |
""" | |
def __init__(self, **discriminator_kwargs): | |
super().__init__() | |
self.discriminator = DACDiscriminator(**discriminator_kwargs) | |
def forward(self, fake, real): | |
d_fake = self.discriminator(fake) | |
d_real = self.discriminator(real) | |
return d_fake, d_real | |
def discriminator_loss(self, fake, real): | |
d_fake, d_real = self.forward(fake.clone().detach(), real) | |
loss_d = 0 | |
for x_fake, x_real in zip(d_fake, d_real): | |
loss_d += torch.mean(x_fake[-1] ** 2) | |
loss_d += torch.mean((1 - x_real[-1]) ** 2) | |
return loss_d | |
def generator_loss(self, fake, real): | |
d_fake, d_real = self.forward(fake, real) | |
loss_g = 0 | |
for x_fake in d_fake: | |
loss_g += torch.mean((1 - x_fake[-1]) ** 2) | |
loss_feature = 0 | |
for i in range(len(d_fake)): | |
for j in range(len(d_fake[i]) - 1): | |
loss_feature += F.l1_loss(d_fake[i][j], d_real[i][j].detach()) | |
return loss_g, loss_feature | |
def loss(self, fake, real): | |
gen_loss, feature_distance = self.generator_loss(fake, real) | |
dis_loss = self.discriminator_loss(fake, real) | |
return dis_loss, gen_loss, feature_distance |