File size: 4,898 Bytes
9172422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from prefigure.prefigure import get_all_args, push_wandb_config
import json
import os
import torch
import pytorch_lightning as pl
import random

from stable_audio_tools.data.dataset import create_dataloader_from_config
from stable_audio_tools.models import create_model_from_config
from stable_audio_tools.models.utils import load_ckpt_state_dict, remove_weight_norm_from_model
from stable_audio_tools.training import create_training_wrapper_from_config, create_demo_callback_from_config
from stable_audio_tools.training.utils import copy_state_dict

class ExceptionCallback(pl.Callback):
    def on_exception(self, trainer, module, err):
        print(f'{type(err).__name__}: {err}')

class ModelConfigEmbedderCallback(pl.Callback):
    def __init__(self, model_config):
        self.model_config = model_config

    def on_save_checkpoint(self, trainer, pl_module, checkpoint):
        checkpoint["model_config"] = self.model_config

def main():

    args = get_all_args()

    seed = args.seed

    # Set a different seed for each process if using SLURM
    if os.environ.get("SLURM_PROCID") is not None:
        seed += int(os.environ.get("SLURM_PROCID"))

    random.seed(seed)
    torch.manual_seed(seed)

    #Get JSON config from args.model_config
    with open(args.model_config) as f:
        model_config = json.load(f)

    with open(args.dataset_config) as f:
        dataset_config = json.load(f)

    train_dl = create_dataloader_from_config(
        dataset_config, 
        batch_size=args.batch_size, 
        num_workers=args.num_workers,
        sample_rate=model_config["sample_rate"],
        sample_size=model_config["sample_size"],
        audio_channels=model_config.get("audio_channels", 2),
    )

    model = create_model_from_config(model_config)
    print(model)

    if args.pretrained_ckpt_path:
        copy_state_dict(model, load_ckpt_state_dict(args.pretrained_ckpt_path))
    
    if args.remove_pretransform_weight_norm == "pre_load":
        remove_weight_norm_from_model(model.pretransform)

    if args.pretransform_ckpt_path:
        model.pretransform.load_state_dict(load_ckpt_state_dict(args.pretransform_ckpt_path))
    
    # Remove weight_norm from the pretransform if specified
    if args.remove_pretransform_weight_norm == "post_load":
        remove_weight_norm_from_model(model.pretransform)

    print("creating training wrapper")
    training_wrapper = create_training_wrapper_from_config(model_config, model)

    wandb_logger = pl.loggers.WandbLogger(project=args.name)
    wandb_logger.watch(training_wrapper)

    exc_callback = ExceptionCallback()
    
    # if args.save_dir and isinstance(wandb_logger.experiment.id, str):
    #     checkpoint_dir = os.path.join(args.save_dir, wandb_logger.experiment.project, wandb_logger.experiment.id, "checkpoints") 
    # else:
    #     checkpoint_dir = None

    checkpoint_dir = args.save_dir

    ckpt_callback = pl.callbacks.ModelCheckpoint(every_n_train_steps=args.checkpoint_every, dirpath=checkpoint_dir, save_top_k=-1)
    save_model_config_callback = ModelConfigEmbedderCallback(model_config)

    demo_callback = create_demo_callback_from_config(model_config, demo_dl=train_dl)

    #Combine args and config dicts
    args_dict = vars(args)
    args_dict.update({"model_config": model_config})
    args_dict.update({"dataset_config": dataset_config})
    push_wandb_config(wandb_logger, args_dict)

    #Set multi-GPU strategy if specified
    if args.strategy:
        if args.strategy == "deepspeed":
            from pytorch_lightning.strategies import DeepSpeedStrategy
            strategy = DeepSpeedStrategy(stage=2, 
                                        contiguous_gradients=True, 
                                        overlap_comm=True, 
                                        reduce_scatter=True, 
                                        reduce_bucket_size=5e8, 
                                        allgather_bucket_size=5e8,
                                        load_full_weights=True
                                        )
        else:
            strategy = args.strategy
    else:
        strategy = 'ddp_find_unused_parameters_true' if args.num_gpus > 1 else "auto" 

    trainer = pl.Trainer(
        devices=args.num_gpus,
        accelerator="gpu",
        num_nodes = args.num_nodes,
        strategy=strategy,
        precision=args.precision,
        accumulate_grad_batches=args.accum_batches, 
        callbacks=[ckpt_callback, demo_callback, exc_callback, save_model_config_callback],
        logger=wandb_logger,
        log_every_n_steps=1,
        max_epochs=12,
        default_root_dir=args.save_dir,
        gradient_clip_val=args.gradient_clip_val,
        reload_dataloaders_every_n_epochs = 0
    )

    trainer.fit(training_wrapper, train_dl, ckpt_path=args.ckpt_path if args.ckpt_path else None)

if __name__ == '__main__':
    main()