File size: 10,945 Bytes
9172422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import torch
from torch.nn import Parameter
from ..models.factory import create_model_from_config

def create_training_wrapper_from_config(model_config, model):
    model_type = model_config.get('model_type', None)
    assert model_type is not None, 'model_type must be specified in model config'

    training_config = model_config.get('training', None)
    assert training_config is not None, 'training config must be specified in model config'

    if model_type == 'autoencoder':
        from .autoencoders import AutoencoderTrainingWrapper

        ema_copy = None

        if training_config.get("use_ema", False):
            ema_copy = create_model_from_config(model_config)
            ema_copy = create_model_from_config(model_config) # I don't know why this needs to be called twice but it broke when I called it once
            # Copy each weight to the ema copy
            for name, param in model.state_dict().items():
                if isinstance(param, Parameter):
                    # backwards compatibility for serialized parameters
                    param = param.data
                ema_copy.state_dict()[name].copy_(param)

        use_ema = training_config.get("use_ema", False)

        latent_mask_ratio = training_config.get("latent_mask_ratio", 0.0)

        teacher_model = training_config.get("teacher_model", None)
        if teacher_model is not None:
            teacher_model = create_model_from_config(teacher_model)
            teacher_model = teacher_model.eval().requires_grad_(False)

            teacher_model_ckpt = training_config.get("teacher_model_ckpt", None)
            if teacher_model_ckpt is not None:
                teacher_model.load_state_dict(torch.load(teacher_model_ckpt)["state_dict"])
            else:
                raise ValueError("teacher_model_ckpt must be specified if teacher_model is specified")

        return AutoencoderTrainingWrapper(
            model, 
            lr=training_config["learning_rate"],
            warmup_steps=training_config.get("warmup_steps", 0), 
            encoder_freeze_on_warmup=training_config.get("encoder_freeze_on_warmup", False),
            sample_rate=model_config["sample_rate"],
            loss_config=training_config.get("loss_configs", None),
            optimizer_configs=training_config.get("optimizer_configs", None),
            use_ema=use_ema,
            ema_copy=ema_copy if use_ema else None,
            force_input_mono=training_config.get("force_input_mono", False),
            latent_mask_ratio=latent_mask_ratio,
            teacher_model=teacher_model
        )
    elif model_type == 'diffusion_uncond':
        from .diffusion import DiffusionUncondTrainingWrapper
        return DiffusionUncondTrainingWrapper(
            model, 
            lr=training_config["learning_rate"],
            pre_encoded=training_config.get("pre_encoded", False),
        )
    elif model_type == 'diffusion_cond':
        print("Creating Diffusion Condition Training Wrapper")
        from .diffusion import DiffusionCondTrainingWrapper
        return DiffusionCondTrainingWrapper(
            model, 
            lr=training_config.get("learning_rate", None),
            mask_padding=training_config.get("mask_padding", False),
            mask_padding_dropout=training_config.get("mask_padding_dropout", 0.0),
            use_ema = training_config.get("use_ema", True),
            log_loss_info=training_config.get("log_loss_info", False),
            optimizer_configs=training_config.get("optimizer_configs", None),
            pre_encoded=training_config.get("pre_encoded", False),
            cfg_dropout_prob = training_config.get("cfg_dropout_prob", 0.1),
            timestep_sampler = training_config.get("timestep_sampler", "uniform")
        )
    elif model_type == 'diffusion_prior':
        from .diffusion import DiffusionPriorTrainingWrapper
        from ..models.diffusion_prior import PriorType

        ema_copy = create_model_from_config(model_config)
        
        # Copy each weight to the ema copy
        for name, param in model.state_dict().items():
            if isinstance(param, Parameter):
                # backwards compatibility for serialized parameters
                param = param.data
            ema_copy.state_dict()[name].copy_(param)

        prior_type = training_config.get("prior_type", "mono_stereo")

        if prior_type == "mono_stereo":
            prior_type_enum = PriorType.MonoToStereo
        else:
            raise ValueError(f"Unknown prior type: {prior_type}")

        return DiffusionPriorTrainingWrapper(
            model, 
            lr=training_config["learning_rate"],
            ema_copy=ema_copy,
            prior_type=prior_type_enum,
            log_loss_info=training_config.get("log_loss_info", False),
            use_reconstruction_loss=training_config.get("use_reconstruction_loss", False),
        )
    elif model_type == 'diffusion_cond_inpaint':
        from .diffusion import DiffusionCondInpaintTrainingWrapper
        return DiffusionCondInpaintTrainingWrapper(
            model, 
            lr=training_config.get("learning_rate", None),
            max_mask_segments = training_config.get("max_mask_segments", 10),
            log_loss_info=training_config.get("log_loss_info", False),
            optimizer_configs=training_config.get("optimizer_configs", None),
            use_ema=training_config.get("use_ema", True),
            pre_encoded=training_config.get("pre_encoded", False),
            cfg_dropout_prob = training_config.get("cfg_dropout_prob", 0.1),
            timestep_sampler = training_config.get("timestep_sampler", "uniform")
        )
    elif model_type == 'diffusion_autoencoder':
        from .diffusion import DiffusionAutoencoderTrainingWrapper

        ema_copy = create_model_from_config(model_config)
        
        # Copy each weight to the ema copy
        for name, param in model.state_dict().items():
            if isinstance(param, Parameter):
                # backwards compatibility for serialized parameters
                param = param.data
            ema_copy.state_dict()[name].copy_(param)

        return DiffusionAutoencoderTrainingWrapper(
            model,
            ema_copy=ema_copy,
            lr=training_config["learning_rate"],
            use_reconstruction_loss=training_config.get("use_reconstruction_loss", False)
        )
    elif model_type == 'lm':
        from .lm import AudioLanguageModelTrainingWrapper

        ema_copy = create_model_from_config(model_config)

        for name, param in model.state_dict().items():
            if isinstance(param, Parameter):
                # backwards compatibility for serialized parameters
                param = param.data
            ema_copy.state_dict()[name].copy_(param)

        return AudioLanguageModelTrainingWrapper(
            model,
            ema_copy=ema_copy,
            lr=training_config.get("learning_rate", None),
            use_ema=training_config.get("use_ema", False),
            optimizer_configs=training_config.get("optimizer_configs", None),
            pre_encoded=training_config.get("pre_encoded", False),
        )

    else:
        raise NotImplementedError(f'Unknown model type: {model_type}')

def create_demo_callback_from_config(model_config, **kwargs):
    model_type = model_config.get('model_type', None)
    assert model_type is not None, 'model_type must be specified in model config'

    training_config = model_config.get('training', None)
    assert training_config is not None, 'training config must be specified in model config'

    demo_config = training_config.get("demo", {})

    if model_type == 'autoencoder':
        from .autoencoders import AutoencoderDemoCallback
        return AutoencoderDemoCallback(
            demo_every=demo_config.get("demo_every", 2000), 
            sample_size=model_config["sample_size"], 
            sample_rate=model_config["sample_rate"],
            **kwargs
        )
    elif model_type == 'diffusion_uncond':
        from .diffusion import DiffusionUncondDemoCallback
        return DiffusionUncondDemoCallback(
            demo_every=demo_config.get("demo_every", 2000), 
            demo_steps=demo_config.get("demo_steps", 250), 
            sample_rate=model_config["sample_rate"]
        )
    elif model_type == "diffusion_autoencoder":
        from .diffusion import DiffusionAutoencoderDemoCallback
        return DiffusionAutoencoderDemoCallback(
            demo_every=demo_config.get("demo_every", 2000), 
            demo_steps=demo_config.get("demo_steps", 250),
            sample_size=model_config["sample_size"],
            sample_rate=model_config["sample_rate"],
            **kwargs
        )
    elif model_type == "diffusion_prior":
        from .diffusion import DiffusionPriorDemoCallback
        return DiffusionPriorDemoCallback(
            demo_every=demo_config.get("demo_every", 2000), 
            demo_steps=demo_config.get("demo_steps", 250),
            sample_size=model_config["sample_size"],
            sample_rate=model_config["sample_rate"],
            **kwargs
        )
    elif model_type == "diffusion_cond":
        from .diffusion import DiffusionCondDemoCallback

        return DiffusionCondDemoCallback(
            demo_every=demo_config.get("demo_every", 2000), 
            sample_size=model_config["sample_size"],
            sample_rate=model_config["sample_rate"],
            demo_steps=demo_config.get("demo_steps", 250), 
            num_demos=demo_config["num_demos"],
            demo_cfg_scales=demo_config["demo_cfg_scales"],
            demo_conditioning=demo_config.get("demo_cond", {}),
            demo_cond_from_batch=demo_config.get("demo_cond_from_batch", False),
            display_audio_cond=demo_config.get("display_audio_cond", False),
        )
    elif model_type == "diffusion_cond_inpaint":
        from .diffusion import DiffusionCondInpaintDemoCallback

        return DiffusionCondInpaintDemoCallback(
            demo_every=demo_config.get("demo_every", 2000), 
            sample_size=model_config["sample_size"],
            sample_rate=model_config["sample_rate"],
            demo_steps=demo_config.get("demo_steps", 250),
            demo_cfg_scales=demo_config["demo_cfg_scales"],
            **kwargs
        )
    
    elif model_type == "lm":
        from .lm import AudioLanguageModelDemoCallback

        return AudioLanguageModelDemoCallback(
            demo_every=demo_config.get("demo_every", 2000), 
            sample_size=model_config["sample_size"],
            sample_rate=model_config["sample_rate"],
            demo_cfg_scales=demo_config.get("demo_cfg_scales", [1]),
            demo_conditioning=demo_config.get("demo_cond", None),
            num_demos=demo_config.get("num_demos", 8),
            **kwargs
        )
    else:
        raise NotImplementedError(f'Unknown model type: {model_type}')