File size: 18,386 Bytes
9172422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
import torch
import torchaudio
import wandb
from einops import rearrange
from safetensors.torch import save_file, save_model
from ema_pytorch import EMA
from .losses.auraloss import SumAndDifferenceSTFTLoss, MultiResolutionSTFTLoss
import pytorch_lightning as pl
from ..models.autoencoders import AudioAutoencoder
from ..models.discriminators import EncodecDiscriminator, OobleckDiscriminator, DACGANLoss
from ..models.bottleneck import VAEBottleneck, RVQBottleneck, DACRVQBottleneck, DACRVQVAEBottleneck, RVQVAEBottleneck, WassersteinBottleneck
from .losses import MultiLoss, AuralossLoss, ValueLoss, L1Loss
from .utils import create_optimizer_from_config, create_scheduler_from_config


from pytorch_lightning.utilities.rank_zero import rank_zero_only
from aeiou.viz import pca_point_cloud, audio_spectrogram_image, tokens_spectrogram_image

class AutoencoderTrainingWrapper(pl.LightningModule):
    def __init__(
            self, 
            autoencoder: AudioAutoencoder,
            lr: float = 1e-4,
            warmup_steps: int = 0,
            encoder_freeze_on_warmup: bool = False,
            sample_rate=48000,
            loss_config: dict = None,
            optimizer_configs: dict = None,
            use_ema: bool = True,
            ema_copy = None,
            force_input_mono = False,
            latent_mask_ratio = 0.0,
            teacher_model: AudioAutoencoder = None
    ):
        super().__init__()

        self.automatic_optimization = False

        self.autoencoder = autoencoder

        self.warmed_up = False
        self.warmup_steps = warmup_steps
        self.encoder_freeze_on_warmup = encoder_freeze_on_warmup
        self.lr = lr

        self.force_input_mono = force_input_mono

        self.teacher_model = teacher_model

        if optimizer_configs is None:
            optimizer_configs ={
                "autoencoder": {
                    "optimizer": {
                        "type": "AdamW",
                        "config": {
                            "lr": lr,
                            "betas": (.8, .99)
                        }
                    }
                },
                "discriminator": {
                    "optimizer": {
                        "type": "AdamW",
                        "config": {
                            "lr": lr,
                            "betas": (.8, .99)
                        }
                    }
                }

            } 
            
        self.optimizer_configs = optimizer_configs

        if loss_config is None:
            scales = [2048, 1024, 512, 256, 128, 64, 32]
            hop_sizes = []
            win_lengths = []
            overlap = 0.75
            for s in scales:
                hop_sizes.append(int(s * (1 - overlap)))
                win_lengths.append(s)
        
            loss_config = {
                "discriminator": {
                    "type": "encodec",
                    "config": {
                        "n_ffts": scales,
                        "hop_lengths": hop_sizes,
                        "win_lengths": win_lengths,
                        "filters": 32
                    },
                    "weights": {
                        "adversarial": 0.1,
                        "feature_matching": 5.0,
                    }
                },
                "spectral": {
                    "type": "mrstft",
                    "config": {
                        "fft_sizes": scales,
                        "hop_sizes": hop_sizes,
                        "win_lengths": win_lengths,
                        "perceptual_weighting": True
                    },
                    "weights": {
                        "mrstft": 1.0,
                    }
                },
                "time": {
                    "type": "l1",
                    "config": {},
                    "weights": {
                        "l1": 0.0,
                    }
                }
            }
        
        self.loss_config = loss_config
       
        # Spectral reconstruction loss

        stft_loss_args = loss_config['spectral']['config']

        if self.autoencoder.out_channels == 2:
            self.sdstft = SumAndDifferenceSTFTLoss(sample_rate=sample_rate, **stft_loss_args)
            self.lrstft = MultiResolutionSTFTLoss(sample_rate=sample_rate, **stft_loss_args)
        else:
            self.sdstft = MultiResolutionSTFTLoss(sample_rate=sample_rate, **stft_loss_args)

        # Discriminator

        if loss_config['discriminator']['type'] == 'oobleck':
            self.discriminator = OobleckDiscriminator(**loss_config['discriminator']['config'])
        elif loss_config['discriminator']['type'] == 'encodec':
            self.discriminator = EncodecDiscriminator(in_channels=self.autoencoder.out_channels, **loss_config['discriminator']['config'])
        elif loss_config['discriminator']['type'] == 'dac':
            self.discriminator = DACGANLoss(channels=self.autoencoder.out_channels, sample_rate=sample_rate, **loss_config['discriminator']['config'])

        self.gen_loss_modules = []

        # Adversarial and feature matching losses
        self.gen_loss_modules += [
            ValueLoss(key='loss_adv', weight=self.loss_config['discriminator']['weights']['adversarial'], name='loss_adv'),
            ValueLoss(key='feature_matching_distance', weight=self.loss_config['discriminator']['weights']['feature_matching'], name='feature_matching'),
        ]

        if self.teacher_model is not None:
            # Distillation losses

            stft_loss_weight = self.loss_config['spectral']['weights']['mrstft'] * 0.25
            self.gen_loss_modules += [
                AuralossLoss(self.sdstft, 'reals', 'decoded', name='mrstft_loss', weight=stft_loss_weight), # Reconstruction loss
                AuralossLoss(self.sdstft, 'decoded', 'teacher_decoded', name='mrstft_loss_distill', weight=stft_loss_weight), # Distilled model's decoder is compatible with teacher's decoder
                AuralossLoss(self.sdstft, 'reals', 'own_latents_teacher_decoded', name='mrstft_loss_own_latents_teacher', weight=stft_loss_weight), # Distilled model's encoder is compatible with teacher's decoder
                AuralossLoss(self.sdstft, 'reals', 'teacher_latents_own_decoded', name='mrstft_loss_teacher_latents_own', weight=stft_loss_weight) # Teacher's encoder is compatible with distilled model's decoder
            ]

        else:

            # Reconstruction loss
            self.gen_loss_modules += [
                AuralossLoss(self.sdstft, 'reals', 'decoded', name='mrstft_loss', weight=self.loss_config['spectral']['weights']['mrstft']),
            ]

            if self.autoencoder.out_channels == 2:

                # Add left and right channel reconstruction losses in addition to the sum and difference
                self.gen_loss_modules += [
                    AuralossLoss(self.lrstft, 'reals_left', 'decoded_left', name='stft_loss_left', weight=self.loss_config['spectral']['weights']['mrstft']/2),
                    AuralossLoss(self.lrstft, 'reals_right', 'decoded_right', name='stft_loss_right', weight=self.loss_config['spectral']['weights']['mrstft']/2),
                ]

            self.gen_loss_modules += [
                AuralossLoss(self.sdstft, 'reals', 'decoded', name='mrstft_loss', weight=self.loss_config['spectral']['weights']['mrstft']),
            ]

        if self.loss_config['time']['weights']['l1'] > 0.0:
            self.gen_loss_modules.append(L1Loss(key_a='reals', key_b='decoded', weight=self.loss_config['time']['weights']['l1'], name='l1_time_loss'))

        if self.autoencoder.bottleneck is not None:
            self.gen_loss_modules += create_loss_modules_from_bottleneck(self.autoencoder.bottleneck, self.loss_config)

        self.losses_gen = MultiLoss(self.gen_loss_modules)

        self.disc_loss_modules = [
            ValueLoss(key='loss_dis', weight=1.0, name='discriminator_loss'),
        ]

        self.losses_disc = MultiLoss(self.disc_loss_modules)

        # Set up EMA for model weights
        self.autoencoder_ema = None
        
        self.use_ema = use_ema

        if self.use_ema:
            self.autoencoder_ema = EMA(
                self.autoencoder,
                ema_model=ema_copy,
                beta=0.9999,
                power=3/4,
                update_every=1,
                update_after_step=1
            )

        self.latent_mask_ratio = latent_mask_ratio

    def configure_optimizers(self):

        opt_gen = create_optimizer_from_config(self.optimizer_configs['autoencoder']['optimizer'], self.autoencoder.parameters())
        opt_disc = create_optimizer_from_config(self.optimizer_configs['discriminator']['optimizer'], self.discriminator.parameters())

        if "scheduler" in self.optimizer_configs['autoencoder'] and "scheduler" in self.optimizer_configs['discriminator']:
            sched_gen = create_scheduler_from_config(self.optimizer_configs['autoencoder']['scheduler'], opt_gen)
            sched_disc = create_scheduler_from_config(self.optimizer_configs['discriminator']['scheduler'], opt_disc)
            return [opt_gen, opt_disc], [sched_gen, sched_disc]

        return [opt_gen, opt_disc]
  
    def training_step(self, batch, batch_idx):
        reals, _ = batch

        # Remove extra dimension added by WebDataset
        if reals.ndim == 4 and reals.shape[0] == 1:
            reals = reals[0]

        if self.global_step >= self.warmup_steps:
            self.warmed_up = True

        loss_info = {}

        loss_info["reals"] = reals

        encoder_input = reals

        if self.force_input_mono and encoder_input.shape[1] > 1:
            encoder_input = encoder_input.mean(dim=1, keepdim=True)

        loss_info["encoder_input"] = encoder_input

        data_std = encoder_input.std()

        if self.warmed_up and self.encoder_freeze_on_warmup:
            with torch.no_grad():
                latents, encoder_info = self.autoencoder.encode(encoder_input, return_info=True)
        else:
            latents, encoder_info = self.autoencoder.encode(encoder_input, return_info=True)

        loss_info["latents"] = latents

        loss_info.update(encoder_info)

        # Encode with teacher model for distillation
        if self.teacher_model is not None:
            with torch.no_grad():
                teacher_latents = self.teacher_model.encode(encoder_input, return_info=False)
                loss_info['teacher_latents'] = teacher_latents

        # Optionally mask out some latents for noise resistance
        if self.latent_mask_ratio > 0.0:
            mask = torch.rand_like(latents) < self.latent_mask_ratio
            latents = torch.where(mask, torch.zeros_like(latents), latents)

        decoded = self.autoencoder.decode(latents)

        loss_info["decoded"] = decoded

        if self.autoencoder.out_channels == 2:
            loss_info["decoded_left"] = decoded[:, 0:1, :]
            loss_info["decoded_right"] = decoded[:, 1:2, :]
            loss_info["reals_left"] = reals[:, 0:1, :]
            loss_info["reals_right"] = reals[:, 1:2, :]

        # Distillation
        if self.teacher_model is not None:
            with torch.no_grad():
                teacher_decoded = self.teacher_model.decode(teacher_latents)
                own_latents_teacher_decoded = self.teacher_model.decode(latents) #Distilled model's latents decoded by teacher
                teacher_latents_own_decoded = self.autoencoder.decode(teacher_latents) #Teacher's latents decoded by distilled model

                loss_info['teacher_decoded'] = teacher_decoded
                loss_info['own_latents_teacher_decoded'] = own_latents_teacher_decoded
                loss_info['teacher_latents_own_decoded'] = teacher_latents_own_decoded

       
        if self.warmed_up:
            loss_dis, loss_adv, feature_matching_distance = self.discriminator.loss(reals, decoded)
        else:
            loss_dis = torch.tensor(0.).to(reals)
            loss_adv = torch.tensor(0.).to(reals)
            feature_matching_distance = torch.tensor(0.).to(reals)

        loss_info["loss_dis"] = loss_dis
        loss_info["loss_adv"] = loss_adv
        loss_info["feature_matching_distance"] = feature_matching_distance

        opt_gen, opt_disc = self.optimizers()

        lr_schedulers = self.lr_schedulers()

        sched_gen = None
        sched_disc = None

        if lr_schedulers is not None:
            sched_gen, sched_disc = lr_schedulers

        # Train the discriminator
        if self.global_step % 2 and self.warmed_up:
            loss, losses = self.losses_disc(loss_info)

            log_dict = {
                'train/disc_lr': opt_disc.param_groups[0]['lr']
            }

            opt_disc.zero_grad()
            self.manual_backward(loss)
            opt_disc.step()

            if sched_disc is not None:
                # sched step every step
                sched_disc.step()

        # Train the generator 
        else:

            loss, losses = self.losses_gen(loss_info)

            if self.use_ema:
                self.autoencoder_ema.update()

            opt_gen.zero_grad()
            self.manual_backward(loss)
            opt_gen.step()

            if sched_gen is not None:
                # scheduler step every step
                sched_gen.step()

            log_dict = {
                'train/loss': loss.detach(),
                'train/latent_std': latents.std().detach(),
                'train/data_std': data_std.detach(),
                'train/gen_lr': opt_gen.param_groups[0]['lr']
            }

        for loss_name, loss_value in losses.items():
            log_dict[f'train/{loss_name}'] = loss_value.detach()

        self.log_dict(log_dict, prog_bar=True, on_step=True)

        return loss
    
    def export_model(self, path, use_safetensors=False):
        if self.autoencoder_ema is not None:
            model = self.autoencoder_ema.ema_model
        else:
            model = self.autoencoder
            
        if use_safetensors:
            save_model(model, path)
        else:
            torch.save({"state_dict": model.state_dict()}, path)
        

class AutoencoderDemoCallback(pl.Callback):
    def __init__(
        self, 
        demo_dl, 
        demo_every=2000,
        sample_size=65536,
        sample_rate=48000
    ):
        super().__init__()
        self.demo_every = demo_every
        self.demo_samples = sample_size
        self.demo_dl = iter(demo_dl)
        self.sample_rate = sample_rate
        self.last_demo_step = -1

    @rank_zero_only
    @torch.no_grad()
    def on_train_batch_end(self, trainer, module, outputs, batch, batch_idx): 
        if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
            return
        
        self.last_demo_step = trainer.global_step

        module.eval()

        try:
            demo_reals, _ = next(self.demo_dl)

            # Remove extra dimension added by WebDataset
            if demo_reals.ndim == 4 and demo_reals.shape[0] == 1:
                demo_reals = demo_reals[0]

            encoder_input = demo_reals
            
            encoder_input = encoder_input.to(module.device)

            if module.force_input_mono:
                encoder_input = encoder_input.mean(dim=1, keepdim=True)

            demo_reals = demo_reals.to(module.device)

            with torch.no_grad():
                if module.use_ema:

                    latents = module.autoencoder_ema.ema_model.encode(encoder_input)

                    fakes = module.autoencoder_ema.ema_model.decode(latents)
                else:
                    latents = module.autoencoder.encode(encoder_input)

                    fakes = module.autoencoder.decode(latents)

            #Interleave reals and fakes
            reals_fakes = rearrange([demo_reals, fakes], 'i b d n -> (b i) d n')

            # Put the demos together
            reals_fakes = rearrange(reals_fakes, 'b d n -> d (b n)')

            log_dict = {}
            
            filename = f'recon_{trainer.global_step:08}.wav'
            reals_fakes = reals_fakes.to(torch.float32).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
            torchaudio.save(filename, reals_fakes, self.sample_rate)

            log_dict[f'recon'] = wandb.Audio(filename,
                                                sample_rate=self.sample_rate,
                                                caption=f'Reconstructed')
            
            log_dict[f'embeddings_3dpca'] = pca_point_cloud(latents)
            log_dict[f'embeddings_spec'] = wandb.Image(tokens_spectrogram_image(latents))

            log_dict[f'recon_melspec_left'] = wandb.Image(audio_spectrogram_image(reals_fakes))

            trainer.logger.experiment.log(log_dict)
        except Exception as e:
            print(f'{type(e).__name__}: {e}')
            raise e
        finally:
            module.train()

def create_loss_modules_from_bottleneck(bottleneck, loss_config):
    losses = []
    
    if isinstance(bottleneck, VAEBottleneck) or isinstance(bottleneck, DACRVQVAEBottleneck) or isinstance(bottleneck, RVQVAEBottleneck):
        try:
            kl_weight = loss_config['bottleneck']['weights']['kl']
        except:
            kl_weight = 1e-6

        kl_loss = ValueLoss(key='kl', weight=kl_weight, name='kl_loss')
        losses.append(kl_loss)

    if isinstance(bottleneck, RVQBottleneck) or isinstance(bottleneck, RVQVAEBottleneck):
        quantizer_loss = ValueLoss(key='quantizer_loss', weight=1.0, name='quantizer_loss')
        losses.append(quantizer_loss)

    if isinstance(bottleneck, DACRVQBottleneck) or isinstance(bottleneck, DACRVQVAEBottleneck):
        codebook_loss = ValueLoss(key='vq/codebook_loss', weight=1.0, name='codebook_loss')
        commitment_loss = ValueLoss(key='vq/commitment_loss', weight=0.25, name='commitment_loss')
        losses.append(codebook_loss)
        losses.append(commitment_loss)

    if isinstance(bottleneck, WassersteinBottleneck):
        try:
            mmd_weight = loss_config['bottleneck']['weights']['mmd']
        except:
            mmd_weight = 100

        mmd_loss = ValueLoss(key='mmd', weight=mmd_weight, name='mmd_loss')
        losses.append(mmd_loss)
    
    return losses