Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,238 Bytes
9172422 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
import math
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from scipy.optimize import fmin
from scipy.signal import firwin, kaiser, kaiser_beta, kaiserord
class PQMF(nn.Module):
"""
Pseudo Quadrature Mirror Filter (PQMF) for multiband signal decomposition and reconstruction.
Uses polyphase representation which is computationally more efficient for real-time.
Parameters:
- attenuation (int): Desired attenuation of the rejected frequency bands, usually between 80 and 120 dB.
- num_bands (int): Number of desired frequency bands. It must be a power of 2.
"""
def __init__(self, attenuation, num_bands):
super(PQMF, self).__init__()
# Ensure num_bands is a power of 2
is_power_of_2 = (math.log2(num_bands) == int(math.log2(num_bands)))
assert is_power_of_2, "'num_bands' must be a power of 2."
# Create the prototype filter
prototype_filter = design_prototype_filter(attenuation, num_bands)
filter_bank = generate_modulated_filter_bank(prototype_filter, num_bands)
padded_filter_bank = pad_to_nearest_power_of_two(filter_bank)
# Register filters and settings
self.register_buffer("filter_bank", padded_filter_bank)
self.register_buffer("prototype", prototype_filter)
self.num_bands = num_bands
def forward(self, signal):
"""Decompose the signal into multiple frequency bands."""
# If signal is not a pytorch tensor of Batch x Channels x Length, convert it
signal = prepare_signal_dimensions(signal)
# The signal length must be a multiple of num_bands. Pad it with zeros.
signal = pad_signal(signal, self.num_bands)
# run it
signal = polyphase_analysis(signal, self.filter_bank)
return apply_alias_cancellation(signal)
def inverse(self, bands):
"""Reconstruct the original signal from the frequency bands."""
bands = apply_alias_cancellation(bands)
return polyphase_synthesis(bands, self.filter_bank)
def prepare_signal_dimensions(signal):
"""
Rearrange signal into Batch x Channels x Length.
Parameters
----------
signal : torch.Tensor or numpy.ndarray
The input signal.
Returns
-------
torch.Tensor
Preprocessed signal tensor.
"""
# Convert numpy to torch tensor
if isinstance(signal, np.ndarray):
signal = torch.from_numpy(signal)
# Ensure tensor
if not isinstance(signal, torch.Tensor):
raise ValueError("Input should be either a numpy array or a PyTorch tensor.")
# Modify dimension of signal to Batch x Channels x Length
if signal.dim() == 1:
# This is just a mono signal. Unsqueeze to 1 x 1 x Length
signal = signal.unsqueeze(0).unsqueeze(0)
elif signal.dim() == 2:
# This is a multi-channel signal (e.g. stereo)
# Rearrange so that larger dimension (Length) is last
if signal.shape[0] > signal.shape[1]:
signal = signal.T
# Unsqueeze to 1 x Channels x Length
signal = signal.unsqueeze(0)
return signal
def pad_signal(signal, num_bands):
"""
Pads the signal to make its length divisible by the given number of bands.
Parameters
----------
signal : torch.Tensor
The input signal tensor, where the last dimension represents the signal length.
num_bands : int
The number of bands by which the signal length should be divisible.
Returns
-------
torch.Tensor
The padded signal tensor. If the original signal length was already divisible
by num_bands, returns the original signal unchanged.
"""
remainder = signal.shape[-1] % num_bands
if remainder > 0:
padding_size = num_bands - remainder
signal = nn.functional.pad(signal, (0, padding_size))
return signal
def generate_modulated_filter_bank(prototype_filter, num_bands):
"""
Generate a QMF bank of cosine modulated filters based on a given prototype filter.
Parameters
----------
prototype_filter : torch.Tensor
The prototype filter used as the basis for modulation.
num_bands : int
The number of desired subbands or filters.
Returns
-------
torch.Tensor
A bank of cosine modulated filters.
"""
# Initialize indices for modulation.
subband_indices = torch.arange(num_bands).reshape(-1, 1)
# Calculate the length of the prototype filter.
filter_length = prototype_filter.shape[-1]
# Generate symmetric time indices centered around zero.
time_indices = torch.arange(-(filter_length // 2), (filter_length // 2) + 1)
# Calculate phase offsets to ensure orthogonality between subbands.
phase_offsets = (-1)**subband_indices * np.pi / 4
# Compute the cosine modulation function.
modulation = torch.cos(
(2 * subband_indices + 1) * np.pi / (2 * num_bands) * time_indices + phase_offsets
)
# Apply modulation to the prototype filter.
modulated_filters = 2 * prototype_filter * modulation
return modulated_filters
def design_kaiser_lowpass(angular_cutoff, attenuation, filter_length=None):
"""
Design a lowpass filter using the Kaiser window.
Parameters
----------
angular_cutoff : float
The angular frequency cutoff of the filter.
attenuation : float
The desired stopband attenuation in decibels (dB).
filter_length : int, optional
Desired length of the filter. If not provided, it's computed based on the given specs.
Returns
-------
ndarray
The designed lowpass filter coefficients.
"""
estimated_length, beta = kaiserord(attenuation, angular_cutoff / np.pi)
# Ensure the estimated length is odd.
estimated_length = 2 * (estimated_length // 2) + 1
if filter_length is None:
filter_length = estimated_length
return firwin(filter_length, angular_cutoff, window=('kaiser', beta), scale=False, nyq=np.pi)
def evaluate_filter_objective(angular_cutoff, attenuation, num_bands, filter_length):
"""
Evaluate the filter's objective value based on the criteria from https://ieeexplore.ieee.org/document/681427
Parameters
----------
angular_cutoff : float
Angular frequency cutoff of the filter.
attenuation : float
Desired stopband attenuation in dB.
num_bands : int
Number of bands for the multiband filter system.
filter_length : int, optional
Desired length of the filter.
Returns
-------
float
The computed objective (loss) value for the given filter specs.
"""
filter_coeffs = design_kaiser_lowpass(angular_cutoff, attenuation, filter_length)
convolved_filter = np.convolve(filter_coeffs, filter_coeffs[::-1], "full")
return np.max(np.abs(convolved_filter[convolved_filter.shape[-1] // 2::2 * num_bands][1:]))
def design_prototype_filter(attenuation, num_bands, filter_length=None):
"""
Design the optimal prototype filter for a multiband system given the desired specs.
Parameters
----------
attenuation : float
The desired stopband attenuation in dB.
num_bands : int
Number of bands for the multiband filter system.
filter_length : int, optional
Desired length of the filter. If not provided, it's computed based on the given specs.
Returns
-------
ndarray
The optimal prototype filter coefficients.
"""
optimal_angular_cutoff = fmin(lambda angular_cutoff: evaluate_filter_objective(angular_cutoff, attenuation, num_bands, filter_length),
1 / num_bands, disp=0)[0]
prototype_filter = design_kaiser_lowpass(optimal_angular_cutoff, attenuation, filter_length)
return torch.tensor(prototype_filter, dtype=torch.float32)
def pad_to_nearest_power_of_two(x):
"""
Pads the input tensor 'x' on both sides such that its last dimension
becomes the nearest larger power of two.
Parameters:
-----------
x : torch.Tensor
The input tensor to be padded.
Returns:
--------
torch.Tensor
The padded tensor.
"""
current_length = x.shape[-1]
target_length = 2**math.ceil(math.log2(current_length))
total_padding = target_length - current_length
left_padding = total_padding // 2
right_padding = total_padding - left_padding
return nn.functional.pad(x, (left_padding, right_padding))
def apply_alias_cancellation(x):
"""
Applies alias cancellation by inverting the sign of every
second element of every second row, starting from the second
row's first element in a tensor.
This operation helps ensure that the aliasing introduced in
each band during the decomposition will be counteracted during
the reconstruction.
Parameters:
-----------
x : torch.Tensor
The input tensor.
Returns:
--------
torch.Tensor
Tensor with specific elements' sign inverted for alias cancellation.
"""
# Create a mask of the same shape as 'x', initialized with all ones
mask = torch.ones_like(x)
# Update specific elements in the mask to -1 to perform inversion
mask[..., 1::2, ::2] = -1
# Apply the mask to the input tensor 'x'
return x * mask
def ensure_odd_length(tensor):
"""
Pads the last dimension of a tensor to ensure its size is odd.
Parameters:
-----------
tensor : torch.Tensor
Input tensor whose last dimension might need padding.
Returns:
--------
torch.Tensor
The original tensor if its last dimension was already odd,
or the padded tensor with an odd-sized last dimension.
"""
last_dim_size = tensor.shape[-1]
if last_dim_size % 2 == 0:
tensor = nn.functional.pad(tensor, (0, 1))
return tensor
def polyphase_analysis(signal, filter_bank):
"""
Applies the polyphase method to efficiently analyze the signal using a filter bank.
Parameters:
-----------
signal : torch.Tensor
Input signal tensor with shape (Batch x Channels x Length).
filter_bank : torch.Tensor
Filter bank tensor with shape (Bands x Length).
Returns:
--------
torch.Tensor
Signal split into sub-bands. (Batch x Channels x Bands x Length)
"""
num_bands = filter_bank.shape[0]
num_channels = signal.shape[1]
# Rearrange signal for polyphase processing.
# Also combine Batch x Channel into one dimension for now.
#signal = rearrange(signal, "b c (t n) -> b (c n) t", n=num_bands)
signal = rearrange(signal, "b c (t n) -> (b c) n t", n=num_bands)
# Rearrange the filter bank for matching signal shape
filter_bank = rearrange(filter_bank, "c (t n) -> c n t", n=num_bands)
# Apply convolution with appropriate padding to maintain spatial dimensions
padding = filter_bank.shape[-1] // 2
filtered_signal = nn.functional.conv1d(signal, filter_bank, padding=padding)
# Truncate the last dimension post-convolution to adjust the output shape
filtered_signal = filtered_signal[..., :-1]
# Rearrange the first dimension back into Batch x Channels
filtered_signal = rearrange(filtered_signal, "(b c) n t -> b c n t", c=num_channels)
return filtered_signal
def polyphase_synthesis(signal, filter_bank):
"""
Polyphase Inverse: Apply polyphase filter bank synthesis to reconstruct a signal.
Parameters
----------
signal : torch.Tensor
Decomposed signal to be reconstructed (shape: Batch x Channels x Bands x Length).
filter_bank : torch.Tensor
Analysis filter bank (shape: Bands x Length).
should_rearrange : bool, optional
Flag to determine if the filters should be rearranged for polyphase synthesis. Default is True.
Returns
-------
torch.Tensor
Reconstructed signal (shape: Batch x Channels X Length)
"""
num_bands = filter_bank.shape[0]
num_channels = signal.shape[1]
# Rearrange the filter bank
filter_bank = filter_bank.flip(-1)
filter_bank = rearrange(filter_bank, "c (t n) -> n c t", n=num_bands)
# Combine Batch x Channels into one dimension for now.
signal = rearrange(signal, "b c n t -> (b c) n t")
# Apply convolution with appropriate padding
padding_amount = filter_bank.shape[-1] // 2 + 1
reconstructed_signal = nn.functional.conv1d(signal, filter_bank, padding=int(padding_amount))
# Scale the result
reconstructed_signal = reconstructed_signal[..., :-1] * num_bands
# Reorganize the output and truncate
reconstructed_signal = reconstructed_signal.flip(1)
reconstructed_signal = rearrange(reconstructed_signal, "(b c) n t -> b c (t n)", c=num_channels, n=num_bands)
reconstructed_signal = reconstructed_signal[..., 2 * filter_bank.shape[1]:]
return reconstructed_signal |