Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,380 Bytes
9172422 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
import gc
import platform
import numpy as np
# import gradio as gr
import json
import torch
import torchaudio
import librosa
import pandas as pd
# from msclap import CLAP
from aeiou.viz import audio_spectrogram_image
from einops import rearrange
# from safetensors.torch import load_file
# from torch.nn import functional as F
from torchaudio import transforms as T
import os
from ..inference.generation import generate_diffusion_cond, generate_diffusion_uncond
from ..models.factory import create_model_from_config
from ..models.pretrained import get_pretrained_model
from ..models.utils import load_ckpt_state_dict
from ..inference.utils import prepare_audio
from ..training.utils import copy_state_dict
# model = None
# sample_rate = 16000
# sample_size = 160000
def load_model(model_config=None, model_ckpt_path=None, pretrained_name=None, pretransform_ckpt_path=None, device="cuda", model_half=False):
global model, sample_rate, sample_size
if pretrained_name is not None:
print(f"Loading pretrained model {pretrained_name}")
model, model_config = get_pretrained_model(pretrained_name)
elif model_config is not None and model_ckpt_path is not None:
print(f"Creating model from config")
model = create_model_from_config(model_config)
print(f"Loading model checkpoint from {model_ckpt_path}")
# Load checkpoint
copy_state_dict(model, load_ckpt_state_dict(model_ckpt_path))
#model.load_state_dict(load_ckpt_state_dict(model_ckpt_path))
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
if pretransform_ckpt_path is not None:
print(f"Loading pretransform checkpoint from {pretransform_ckpt_path}")
model.pretransform.load_state_dict(load_ckpt_state_dict(pretransform_ckpt_path), strict=False)
print(f"Done loading pretransform")
model.to(device).eval().requires_grad_(False)
if model_half:
model.to(torch.float16)
print(f"Done loading model")
return model, model_config
def generate_cond(
prompt,
negative_prompt=None,
seconds_start=0,
seconds_total=10,
cfg_scale=6.0,
steps=250,
preview_every=None,
seed=-1,
sampler_type="dpmpp-3m-sde",
sigma_min=0.03,
sigma_max=1000,
cfg_rescale=0.0,
use_init=False,
init_audio=None,
init_noise_level=1.0,
mask_cropfrom=None,
mask_pastefrom=None,
mask_pasteto=None,
mask_maskstart=None,
mask_maskend=None,
mask_softnessL=None,
mask_softnessR=None,
mask_marination=None,
batch_size=1,
save_name='output.wav'
):
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
print(f"Prompt: {prompt}")
global preview_images
preview_images = []
if preview_every == 0:
preview_every = None
# Return fake stereo audio
conditioning = [{"prompt": prompt, "seconds_start": seconds_start, "seconds_total": seconds_total}] * batch_size
if negative_prompt:
negative_conditioning = [{"prompt": negative_prompt, "seconds_start": seconds_start, "seconds_total": seconds_total}] * batch_size
else:
negative_conditioning = None
#Get the device from the model
device = next(model.parameters()).device
seed = int(seed)
if not use_init:
init_audio = None
input_sample_size = sample_size
if init_audio is not None:
init_audio, in_sr = torchaudio.load(init_audio)
# Turn into torch tensor, converting from int16 to float32
# init_audio = torch.from_numpy(init_audio).float().div(32767)
init_audio = init_audio.float().div(32767)
# print(init_audio.shape)
# if init_audio.dim() == 1:
# init_audio = init_audio.unsqueeze(0) # [1, n]
# elif init_audio.dim() == 2:
# init_audio = init_audio.transpose(0, 1) # [n, 2] -> [2, n]
if in_sr != sample_rate:
resample_tf = T.Resample(in_sr, sample_rate).to(init_audio.device)
init_audio = resample_tf(init_audio)
audio_length = init_audio.shape[-1]
if audio_length > sample_size:
input_sample_size = audio_length + (model.min_input_length - (audio_length % model.min_input_length)) % model.min_input_length
init_audio = (sample_rate, init_audio)
def progress_callback(callback_info):
global preview_images
denoised = callback_info["denoised"]
current_step = callback_info["i"]
sigma = callback_info["sigma"]
if (current_step - 1) % preview_every == 0:
if model.pretransform is not None:
denoised = model.pretransform.decode(denoised)
denoised = rearrange(denoised, "b d n -> d (b n)")
denoised = denoised.clamp(-1, 1).mul(32767).to(torch.int16).cpu()
audio_spectrogram = audio_spectrogram_image(denoised, sample_rate=sample_rate)
preview_images.append((audio_spectrogram, f"Step {current_step} sigma={sigma:.3f})"))
# If inpainting, send mask args
# This will definitely change in the future
if mask_cropfrom is not None:
mask_args = {
"cropfrom": mask_cropfrom,
"pastefrom": mask_pastefrom,
"pasteto": mask_pasteto,
"maskstart": mask_maskstart,
"maskend": mask_maskend,
"softnessL": mask_softnessL,
"softnessR": mask_softnessR,
"marination": mask_marination,
}
else:
mask_args = None
# Do the audio generation
audio = generate_diffusion_cond(
model,
conditioning=conditioning,
negative_conditioning=negative_conditioning,
steps=steps,
cfg_scale=cfg_scale,
batch_size=batch_size,
sample_size=input_sample_size,
sample_rate=sample_rate,
seed=seed,
device=device,
sampler_type=sampler_type,
sigma_min=sigma_min,
sigma_max=sigma_max,
init_audio=init_audio,
init_noise_level=init_noise_level,
mask_args = mask_args,
callback = progress_callback if preview_every is not None else None,
scale_phi = cfg_rescale
)
# Convert to WAV file
audio = rearrange(audio, "b d n -> d (b n)")
audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
# print(len(audio))
# print(seconds_total)
# print(sample_rate)
# print(int(seconds_total*sample_rate))
# print(len(audio))
# print(audio.shape)
audio = audio[:, :int(seconds_total*sample_rate)]
torchaudio.save(save_name, audio, sample_rate)
return save_name
def generate_aug_one_sample(model_config, duration, caption, steps=100, inpainting=False, init_audio=None, init_noise_level=80, output_file_name='output.wav'):
prompt = caption
negative_prompt = None
model_conditioning_config = model_config["model"].get("conditioning", None)
has_seconds_start = False
has_seconds_total = False
if model_conditioning_config is not None:
for conditioning_config in model_conditioning_config["configs"]:
if conditioning_config["id"] == "seconds_start":
has_seconds_start = True
if conditioning_config["id"] == "seconds_total":
has_seconds_total = True
if has_seconds_total:
seconds_start_slider = 0
seconds_total_slider = duration
steps_slider = steps
preview_every_slider = 0
cfg_scale_slider = 10
seed_textbox = -1
sampler_type_dropdown = "dpmpp-3m-sde" #["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms", "k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"]
sigma_min_slider = 0.03 #gr.Slider(minimum=0.0, maximum=2.0, step=0.01, value=0.03, label="Sigma min")
sigma_max_slider = 500 #gr.Slider(minimum=0.0, maximum=1000.0, step=0.1, value=500, label="Sigma max")
cfg_rescale_slider = 0.0 #gr.Slider(minimum=0.0, maximum=1, step=0.01, value=0.0, label="CFG rescale amount")
if inpainting:
# Inpainting Tab
sigma_max_slider.maximum=1000
init_audio_checkbox = True
init_audio_input = init_audio #gr.Audio(label="Init audio")
init_noise_level_slider = init_noise_level #gr.Slider(minimum=0.1, maximum=100.0, step=0.1, value=80, label="Init audio noise level", visible=False) # hide this
mask_cropfrom_slider = 0 #gr.Slider(minimum=0.0, maximum=100.0, step=0.1, value=0, label="Crop From %")
mask_pastefrom_slider = 0 #gr.Slider(minimum=0.0, maximum=100.0, step=0.1, value=0, label="Paste From %")
mask_pasteto_slider = 100 #gr.Slider(minimum=0.0, maximum=100.0, step=0.1, value=100, label="Paste To %")
mask_maskstart_slider = 50 #gr.Slider(minimum=0.0, maximum=100.0, step=0.1, value=50, label="Mask Start %")
mask_maskend_slider = 100 #r.Slider(minimum=0.0, maximum=100.0, step=0.1, value=100, label="Mask End %")
mask_softnessL_slider = 0 #gr.Slider(minimum=0.0, maximum=100.0, step=0.1, value=0, label="Softmask Left Crossfade Length %")
mask_softnessR_slider = 0 #gr.Slider(minimum=0.0, maximum=100.0, step=0.1, value=0, label="Softmask Right Crossfade Length %")
mask_marination_slider = 0 #gr.Slider(minimum=0.0, maximum=1, step=0.0001, value=0, label="Marination level", visible=False) # still working on the usefulness of this
_ = generate_cond(
prompt,
negative_prompt=None,
seconds_start=seconds_start_slider,
seconds_total=seconds_total_slider,
cfg_scale=cfg_scale_slider,
steps=steps_slider,
preview_every=preview_every_slider,
seed=seed_textbox,
sampler_type=sampler_type_dropdown,
sigma_min=sigma_min_slider,
sigma_max=sigma_max_slider,
cfg_rescale=cfg_rescale_slider,
use_init=init_audio_checkbox,
init_audio=init_audio_input,
init_noise_level=init_noise_level_slider,
mask_cropfrom=mask_cropfrom_slider,
mask_pastefrom=mask_pastefrom_slider,
mask_pasteto=mask_pasteto_slider,
mask_maskstart=mask_maskstart_slider,
mask_maskend=mask_maskend_slider,
mask_softnessL=mask_softnessL_slider,
mask_softnessR=mask_softnessR_slider,
mask_marination=mask_marination_slider,
batch_size=1,
save_name=output_file_name
)
else:
# Default generation tab
if init_audio is not None:
init_audio_checkbox = True
else:
init_audio_checkbox = False
init_audio_input = init_audio #r.Audio(label="Init audio")
init_noise_level_slider = init_noise_level #gr.Slider(minimum=0.1, maximum=100.0, step=0.01, value=0.1, label="Init noise level")
_ = generate_cond(
prompt,
negative_prompt=None,
seconds_start=seconds_start_slider,
seconds_total=seconds_total_slider,
cfg_scale=cfg_scale_slider,
steps=steps_slider,
preview_every=preview_every_slider,
seed=seed_textbox,
sampler_type=sampler_type_dropdown,
sigma_min=sigma_min_slider,
sigma_max=sigma_max_slider,
cfg_rescale=cfg_rescale_slider,
use_init=init_audio_checkbox,
init_audio=init_audio_input,
init_noise_level=init_noise_level_slider,
mask_cropfrom=None,
mask_pastefrom=None,
mask_pasteto=None,
mask_maskstart=None,
mask_maskend=None,
mask_softnessL=None,
mask_softnessR=None,
mask_marination=None,
batch_size=1,
save_name=output_file_name
)
return None
def create_augs(model_config_path=None, ckpt_path=None, pretrained_name=None, pretransform_ckpt_path=None, model_half=False, json_path=None, output_folder=None, num_iters=5, use_label = "True", dataset_name = None, output_csv_path = './', num_process=0, init_noise_level=80, clap_filter="False", clap_threshold=75.0, initialize_audio = "True", dpo = "False", supcon = "False"):
assert (pretrained_name is not None) ^ (model_config_path is not None and ckpt_path is not None), "Must specify either pretrained name or provide a model config and checkpoint, but not both"
# if clap_filter == "True":
# clap_model = CLAP(version = '2023', use_cuda=True)
if model_config_path is not None:
# Load config from json file
with open(model_config_path) as f:
model_config = json.load(f)
else:
model_config = None
try:
has_mps = platform.system() == "Darwin" and torch.backends.mps.is_available()
except Exception:
# In case this version of Torch doesn't even have `torch.backends.mps`...
has_mps = False
if has_mps:
device = torch.device("mps")
elif torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
print("Using device:", device)
_, model_config = load_model(model_config, ckpt_path, pretrained_name=pretrained_name, pretransform_ckpt_path=pretransform_ckpt_path, model_half=model_half, device=device)
model_type = model_config["model_type"]
all_audios = []
if json_path.endswith('.json'):
with open(json_path, 'r') as f:
for line in f.readlines():
all_audios.append(json.loads(line))
elif json_path.endswith('.csv'):
gpt_caption_present = False
orig_df = pd.read_csv(json_path)
if 'gpt_captions' in orig_df.columns:
gpt_caption_present = True
for i,row in orig_df.iterrows():
# need seperate condition for sup_con == "True", when sup_con is "True", use_label will always be "False", but there is no compulsion on the presence of GAMA captions -- thus it will break the normal flow
if supcon == "True":
all_audios.append({'path': row['path'], 'caption': "None", 'gpt_captions': eval(row['gpt_captions_supcon'])}) # always use GPT captions for supervised contrastive
else:
if use_label == "True":
caption = "Sound of a " + " ".join(row['label'].split("_"))
all_audios.append({'path': row['path'], 'caption': caption})
elif use_label == "False":
# might be that the caption column is not present
if 'caption' in orig_df.columns:
if ":" in row['caption']:
temp_caption = row['caption'].split(": ")[-1]
else:
temp_caption = row['caption']
else:
temp_caption = "None"
# row['caption'][len("Audio caption: "):]
if dpo == "True":
# if dpo, there is no point in looking for GPT captions, so this is hard coded
all_audios.append({'path': row['path'], 'caption': temp_caption, 'gpt_captions': "None"})
else:
if gpt_caption_present:
all_audios.append({'path': row['path'], 'caption': temp_caption, 'gpt_captions': eval(row['gpt_captions'])})
else:
all_audios.append({'path': row['path'], 'caption': temp_caption, 'gpt_captions': "None"})
old_audios_list = []
new_audios_list = []
new_labels_list = []
new_caption_list = []
for it in range(num_iters):
for i, audio_info in enumerate(all_audios):
audio_name = audio_info['path'].split("/")[-1]
output_file_name = os.path.join(output_folder, audio_name[:-4] + "_" + str(it) + ".wav")
audio, sampling_rate = torchaudio.load(audio_info['path'])
duration = round(audio.shape[-1] / sampling_rate, 2)
try:
if use_label == "False": # condition when and if to choose GPT captions or GAMA captions
caption = audio_info['caption'] # already GAMA captions since use_label == "False"
if audio_info['gpt_captions'] != "None":
if len(audio_info['gpt_captions']) > it:
print('Using GPT captions for generation')
caption = audio_info['gpt_captions'][it]
if initialize_audio == "False":
print("Not initilaizing audio for generation.")
generate_aug_one_sample(model_config, duration, caption, steps=250, inpainting=False, init_audio=None, init_noise_level=init_noise_level, output_file_name=output_file_name)
else:
generate_aug_one_sample(model_config, duration, caption, steps=250, inpainting=False, init_audio=audio_info['path'], init_noise_level=init_noise_level, output_file_name=output_file_name)
else:
if initialize_audio == "False":
print("Not initilaizing audio for generation.")
generate_aug_one_sample(model_config, duration, audio_info['caption'], steps=250, inpainting=False, init_audio=None, init_noise_level=init_noise_level, output_file_name=output_file_name)
else:
generate_aug_one_sample(model_config, duration, audio_info['caption'], steps=250, inpainting=False, init_audio=audio_info['path'], init_noise_level=init_noise_level, output_file_name=output_file_name)
old_audios_list.append(audio_info['path'])
new_audios_list.append(output_file_name)
new_labels_list.append(orig_df.iloc[i]['label'])
# new_caption_list.append(orig_df.iloc[i]['caption'])
# code to escape if label is being used
if use_label == "False":
# special condition since supervised contrastive learning will not have 'caption' column
if supcon == "True":
new_caption_list.append(caption)
else:
# store the caption used to generate the audio
new_caption_list.append(caption)
# this line assigns the same caption as the original audio
# new_caption_list.append(orig_df.iloc[i]['caption'])
else:
new_caption_list.append(audio_info['caption'])
# if clap_filter == "True":
# text_embeddings = clap_model.get_text_embeddings(["Sound of a " + " ".join(row['label'].split("_"))])
# audio_embeddings = clap_model.get_audio_embeddings([output_file_name])
# similarities = clap_model.compute_similarity(audio_embeddings, text_embeddings)
# if float(similarities[0]) >= float(clap_threshold):
# new_audios_list.append(output_file_name)
# new_labels_list.append(row['label'])
# else:
# new_audios_list.append(output_file_name)
# new_labels_list.append(row['label'])
except Exception as e:
print(e)
# generate the CSV for DPO training
if dpo == "True":
dpo_df = pd.DataFrame()
dpo_df['not_preferred'] = new_audios_list
dpo_df['preferred'] = old_audios_list
dpo_df['captions'] = new_caption_list
dpo_df.to_csv(output_csv_path + dataset_name + "_" + 'dpo_' + str(num_process) + '.csv', index = False)
return None
# generate CSV for Supervised Contrastive Training
if supcon == "True":
supcon_df = pd.DataFrame()
supcon_df['path_old'] = old_audios_list
supcon_df['path_new'] = new_audios_list
supcon_df['label'] = new_labels_list
supcon_df['captions'] = new_caption_list
supcon_df.to_csv(output_csv_path + dataset_name + "_" + 'supcon_' + str(num_process) + '.csv', index = False)
return None
synthetic_df = pd.DataFrame()
synthetic_df['path'] = new_audios_list
synthetic_df['label'] = new_labels_list
synthetic_df['dataset'] = [dataset_name for _ in range(len(new_labels_list))]
synthetic_df['split_name'] = ['synthetic_augs' for _ in range(len(new_labels_list))]
synthetic_df['caption'] = new_caption_list
# if use_label == "False":
# synthetic_df['caption'] = new_caption_list
synthetic_df.to_csv(output_csv_path + dataset_name + "_" + 'synthetic_' + str(num_process) + '.csv', index = False)
merged_df = pd.concat([orig_df, synthetic_df], ignore_index=True)
# merged_df = pd.merge(orig_df, synthetic_df, on=['path', 'label', 'dataset', 'split_name'])
merged_df.to_csv(output_csv_path + dataset_name + "_" + 'merged_' + str(num_process) + '.csv', index = False)
return None
|