Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,605 Bytes
9172422 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 |
import importlib
import numpy as np
import io
import os
import posixpath
import random
import re
import subprocess
import time
import torch
import torchaudio
import pandas as pd
import webdataset as wds
from transformers import AutoTokenizer
from aeiou.core import is_silence
from os import path
from pedalboard.io import AudioFile
from torchaudio import transforms as T
from typing import Optional, Callable, List
from .utils import Stereo, Mono, PhaseFlipper, PadCrop_Normalized_T
AUDIO_KEYS = ("flac", "wav", "mp3", "m4a", "ogg", "opus")
# fast_scandir implementation by Scott Hawley originally in https://github.com/zqevans/audio-diffusion/blob/main/dataset/dataset.py
def fast_scandir(
dir:str, # top-level directory at which to begin scanning
ext:list, # list of allowed file extensions,
#max_size = 1 * 1000 * 1000 * 1000 # Only files < 1 GB
):
"very fast `glob` alternative. from https://stackoverflow.com/a/59803793/4259243"
subfolders, files = [], []
ext = ['.'+x if x[0]!='.' else x for x in ext] # add starting period to extensions if needed
try: # hope to avoid 'permission denied' by this try
for f in os.scandir(dir):
try: # 'hope to avoid too many levels of symbolic links' error
if f.is_dir():
subfolders.append(f.path)
elif f.is_file():
file_ext = os.path.splitext(f.name)[1].lower()
is_hidden = os.path.basename(f.path).startswith(".")
if file_ext in ext and not is_hidden:
files.append(f.path)
except:
pass
except:
pass
for dir in list(subfolders):
sf, f = fast_scandir(dir, ext)
subfolders.extend(sf)
files.extend(f)
return subfolders, files
def keyword_scandir(
dir: str, # top-level directory at which to begin scanning
ext: list, # list of allowed file extensions
keywords: list, # list of keywords to search for in the file name
):
"very fast `glob` alternative. from https://stackoverflow.com/a/59803793/4259243"
subfolders, files = [], []
# make keywords case insensitive
keywords = [keyword.lower() for keyword in keywords]
# add starting period to extensions if needed
ext = ['.'+x if x[0] != '.' else x for x in ext]
banned_words = ["paxheader", "__macosx"]
try: # hope to avoid 'permission denied' by this try
for f in os.scandir(dir):
try: # 'hope to avoid too many levels of symbolic links' error
if f.is_dir():
subfolders.append(f.path)
elif f.is_file():
is_hidden = f.name.split("/")[-1][0] == '.'
has_ext = os.path.splitext(f.name)[1].lower() in ext
name_lower = f.name.lower()
has_keyword = any(
[keyword in name_lower for keyword in keywords])
has_banned = any(
[banned_word in name_lower for banned_word in banned_words])
if has_ext and has_keyword and not has_banned and not is_hidden and not os.path.basename(f.path).startswith("._"):
files.append(f.path)
except:
pass
except:
pass
for dir in list(subfolders):
sf, f = keyword_scandir(dir, ext, keywords)
subfolders.extend(sf)
files.extend(f)
return subfolders, files
def get_audio_filenames(
paths: list, # directories in which to search
keywords=None,
exts=['.wav', '.mp3', '.flac', '.ogg', '.aif', '.opus']
):
"recursively get a list of audio filenames"
filenames = []
if type(paths) is str:
paths = [paths]
for path in paths: # get a list of relevant filenames
if keywords is not None:
subfolders, files = keyword_scandir(path, exts, keywords)
else:
subfolders, files = fast_scandir(path, exts)
filenames.extend(files)
return filenames
class LocalDatasetConfig:
def __init__(
self,
id: str,
path: str,
custom_metadata_fn: Optional[Callable[[str], str]] = None
):
self.id = id
self.path = path
self.custom_metadata_fn = custom_metadata_fn
class SampleDataset(torch.utils.data.Dataset):
def __init__(
self,
configs,
sample_size=65536,
sample_rate=48000,
keywords=None,
random_crop=True,
force_channels="stereo"
):
super().__init__()
self.csv_dataset = pd.read_csv(configs[0].path)[:1000]
self.filenames = list(self.csv_dataset['path'])
self.captions = list(self.csv_dataset['caption'])
self.augs = torch.nn.Sequential(
PhaseFlipper(),
)
self.root_paths = []
self.pad_crop = PadCrop_Normalized_T(sample_size, sample_rate, randomize=random_crop)
self.force_channels = force_channels
self.encoding = torch.nn.Sequential(
Stereo() if self.force_channels == "stereo" else torch.nn.Identity(),
Mono() if self.force_channels == "mono" else torch.nn.Identity(),
)
self.sr = sample_rate
# Initialize the LLM tokenizer and expand
# 0. Initialize LLM tokenizer
self.llm_model_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B")
self.num_new_tokens = 64
# 1. LLM has the special token "<ad>" for system message to generate image -> add_tokens "<img>" -> 32000
self.llm_model_tokenizer.add_tokens(["<ad>"], special_tokens=False)
# 2. LLM contains 32 tokens to summarize image and text information for conversation system -> add_tokens "<img_0>...<img_31>" -> 32003~32034
new_token_list = [f"<ad_{i}>" for i in range(self.num_new_tokens)]
self.llm_model_tokenizer.add_tokens(new_token_list, special_tokens=False)
# 3. count new tokens and resize tokenizer
self.num_new_tokens = self.num_new_tokens + 1
self.llm_model_tokenizer.ad_start_token_id = self.llm_model_tokenizer.convert_tokens_to_ids("<ad_0>")
print(f'Found {len(self.filenames)} files')
def load_file(self, filename):
ext = filename.split(".")[-1]
if ext == "mp3":
with AudioFile(filename) as f:
audio = f.read(f.frames)
audio = torch.from_numpy(audio)
in_sr = f.samplerate
else:
audio, in_sr = torchaudio.load(filename, format=ext)
if in_sr != self.sr:
resample_tf = T.Resample(in_sr, self.sr)
audio = resample_tf(audio)
return audio
def __len__(self):
return len(self.filenames)
def __getitem__(self, idx):
audio_filename = self.filenames[idx]
try:
start_time = time.time()
# for preferred audio
audio = self.load_file(audio_filename)
audio, t_start, t_end, seconds_start, seconds_total, padding_mask = self.pad_crop(audio)
# Run augmentations on this sample (including random crop)
if self.augs is not None:
audio = self.augs(audio)
audio = audio.clamp(-1, 1)
# Encode the file to assist in prediction
if self.encoding is not None:
audio = self.encoding(audio)
# --------------------------------------------------------------- #
info = {}
info["path"] = audio_filename
for root_path in self.root_paths:
if root_path in audio_filename:
info["relpath"] = path.relpath(audio_filename, root_path)
info["timestamps"] = (t_start, t_end)
info["seconds_start"] = seconds_start
info["seconds_total"] = seconds_total
info["padding_mask"] = padding_mask
end_time = time.time()
info["load_time"] = end_time - start_time
info['prompt'] = self.captions[idx]
# # define a system prompt for the LLM
# llm_caption_system = "A chat between a curious user and an artificial intelligence assistant. The assistant can generate <ad>. "
# # construct the prompt for the LLM
# llm_caption_interim = "Please generate an audio for the following caption: " + info["prompt"]
# llm_caption_last = " Here is the audio for the given caption: [ad]"
# append_str = ""
# for i in range(self.num_new_tokens - 1):
# append_str += f" <ad_{i}>"
# llm_caption = llm_caption_last.replace(" [ad]", append_str)
# # add the system prompt to the LLM prompt
# llm_caption = llm_caption_system + llm_caption_interim + llm_caption_last
# # tokenize the prompt
# IGNORE_TOKEN_ID=-100
# input_ids_max_len = 512
# llm_caption_input_ids = self.llm_tokenizer(
# llm_caption,
# return_tensors="pt",
# padding="max_length",
# max_length=input_ids_max_len,
# truncation=True,
# ).input_ids[0]
# # generate LLM targets
# llm_targets = llm_caption_input_ids.clone()
# llm_targets[:1] = IGNORE_TOKEN_ID
# total_padding_len = int(llm_targets.ne(self.llm_tokenizer.pad_token_id).sum())
# instruction_len = len(
# self.llm_model_tokenizer(
# llm_caption_system + llm_caption_interim,
# max_length=input_ids_max_len,
# truncation=True,
# ).input_ids) - 2
# llm_targets[1:(1 + instruction_len)] = IGNORE_TOKEN_ID
# llm_targets[total_padding_len:] = IGNORE_TOKEN_ID
# # store everything in a dictionary
# prompt_dict = {}
# prompt_dict["prompt"] = self.captions[idx]
# prompt_dict['llm_caption_last'] = llm_caption_last
# prompt_dict['llm_caption_interim'] = llm_caption_interim
# prompt_dict['llm_caption_system'] = llm_caption_system
# prompt_dict['llm_caption_input_ids'] = llm_caption_input_ids
# prompt_dict['llm_targets'] = llm_targets
# prompt_dict['llm_input_ids_attention_mask'] = llm_caption_input_ids.ne(self.llm_tokenizer.pad_token_id)
# prompt_dict['llm_qformer_attention_mask'] = llm_caption_input_ids.ge(self.llm_tokenizer.img_start_token_id)
# # store the dictionary as a key
# info['prompt'] = prompt_dict
return (audio, info)
except Exception as e:
print(f'Couldn\'t load file {audio_filename}: {e}')
return self[random.randrange(len(self))]
def group_by_keys(data, keys=wds.tariterators.base_plus_ext, lcase=True, suffixes=None, handler=None):
"""Return function over iterator that groups key, value pairs into samples.
:param keys: function that splits the key into key and extension (base_plus_ext)
:param lcase: convert suffixes to lower case (Default value = True)
"""
current_sample = None
for filesample in data:
assert isinstance(filesample, dict)
fname, value = filesample["fname"], filesample["data"]
prefix, suffix = keys(fname)
if wds.tariterators.trace:
print(
prefix,
suffix,
current_sample.keys() if isinstance(current_sample, dict) else None,
)
if prefix is None:
continue
if lcase:
suffix = suffix.lower()
if current_sample is None or prefix != current_sample["__key__"]:
if wds.tariterators.valid_sample(current_sample):
yield current_sample
current_sample = dict(__key__=prefix, __url__=filesample["__url__"])
if suffix in current_sample:
print(f"{fname}: duplicate file name in tar file {suffix} {current_sample.keys()}")
if suffixes is None or suffix in suffixes:
current_sample[suffix] = value
if wds.tariterators.valid_sample(current_sample):
yield current_sample
wds.tariterators.group_by_keys = group_by_keys
# S3 code and WDS preprocessing code based on implementation by Scott Hawley originally in https://github.com/zqevans/audio-diffusion/blob/main/dataset/dataset.py
def get_s3_contents(dataset_path, s3_url_prefix=None, filter='', recursive=True, debug=False, profile=None):
"""
Returns a list of full S3 paths to files in a given S3 bucket and directory path.
"""
# Ensure dataset_path ends with a trailing slash
if dataset_path != '' and not dataset_path.endswith('/'):
dataset_path += '/'
# Use posixpath to construct the S3 URL path
bucket_path = posixpath.join(s3_url_prefix or '', dataset_path)
# Construct the `aws s3 ls` command
cmd = ['aws', 's3', 'ls', bucket_path]
if profile is not None:
cmd.extend(['--profile', profile])
if recursive:
# Add the --recursive flag if requested
cmd.append('--recursive')
# Run the `aws s3 ls` command and capture the output
run_ls = subprocess.run(cmd, capture_output=True, check=True)
# Split the output into lines and strip whitespace from each line
contents = run_ls.stdout.decode('utf-8').split('\n')
contents = [x.strip() for x in contents if x]
# Remove the timestamp from lines that begin with a timestamp
contents = [re.sub(r'^\S+\s+\S+\s+\d+\s+', '', x)
if re.match(r'^\S+\s+\S+\s+\d+\s+', x) else x for x in contents]
# Construct a full S3 path for each file in the contents list
contents = [posixpath.join(s3_url_prefix or '', x)
for x in contents if not x.endswith('/')]
# Apply the filter, if specified
if filter:
contents = [x for x in contents if filter in x]
# Remove redundant directory names in the S3 URL
if recursive:
# Get the main directory name from the S3 URL
main_dir = "/".join(bucket_path.split('/')[3:])
# Remove the redundant directory names from each file path
contents = [x.replace(f'{main_dir}', '').replace(
'//', '/') for x in contents]
# Print debugging information, if requested
if debug:
print("contents = \n", contents)
# Return the list of S3 paths to files
return contents
def get_all_s3_urls(
names=[], # list of all valid [LAION AudioDataset] dataset names
# list of subsets you want from those datasets, e.g. ['train','valid']
subsets=[''],
s3_url_prefix=None, # prefix for those dataset names
recursive=True, # recursively list all tar files in all subdirs
filter_str='tar', # only grab files with this substring
# print debugging info -- note: info displayed likely to change at dev's whims
debug=False,
profiles={}, # dictionary of profiles for each item in names, e.g. {'dataset1': 'profile1', 'dataset2': 'profile2'}
):
"get urls of shards (tar files) for multiple datasets in one s3 bucket"
urls = []
for name in names:
# If s3_url_prefix is not specified, assume the full S3 path is included in each element of the names list
if s3_url_prefix is None:
contents_str = name
else:
# Construct the S3 path using the s3_url_prefix and the current name value
contents_str = posixpath.join(s3_url_prefix, name)
if debug:
print(f"get_all_s3_urls: {contents_str}:")
for subset in subsets:
subset_str = posixpath.join(contents_str, subset)
if debug:
print(f"subset_str = {subset_str}")
# Get the list of tar files in the current subset directory
profile = profiles.get(name, None)
tar_list = get_s3_contents(
subset_str, s3_url_prefix=None, recursive=recursive, filter=filter_str, debug=debug, profile=profile)
for tar in tar_list:
# Escape spaces and parentheses in the tar filename for use in the shell command
tar = tar.replace(" ", "\ ").replace(
"(", "\(").replace(")", "\)")
# Construct the S3 path to the current tar file
s3_path = posixpath.join(name, subset, tar) + " -"
# Construct the AWS CLI command to download the current tar file
if s3_url_prefix is None:
request_str = f"pipe:aws s3 --cli-connect-timeout 0 cp {s3_path}"
else:
request_str = f"pipe:aws s3 --cli-connect-timeout 0 cp {posixpath.join(s3_url_prefix, s3_path)}"
if profiles.get(name):
request_str += f" --profile {profiles.get(name)}"
if debug:
print("request_str = ", request_str)
# Add the constructed URL to the list of URLs
urls.append(request_str)
return urls
def log_and_continue(exn):
"""Call in an exception handler to ignore any exception, isssue a warning, and continue."""
print(f"Handling webdataset error ({repr(exn)}). Ignoring.")
return True
def is_valid_sample(sample):
has_json = "json" in sample
has_audio = "audio" in sample
is_silent = is_silence(sample["audio"])
is_rejected = "__reject__" in sample["json"] and sample["json"]["__reject__"]
return has_json and has_audio and not is_silent and not is_rejected
class S3DatasetConfig:
def __init__(
self,
id: str,
s3_path: str,
custom_metadata_fn: Optional[Callable[[str], str]] = None,
profile: Optional[str] = None,
):
self.id = id
self.path = s3_path
self.custom_metadata_fn = custom_metadata_fn
self.profile = profile
self.urls = []
def load_data_urls(self):
self.urls = get_all_s3_urls(
names=[self.path],
s3_url_prefix=None,
recursive=True,
profiles={self.path: self.profile} if self.profile else {},
)
return self.urls
class LocalWebDatasetConfig:
def __init__(
self,
id: str,
path: str,
custom_metadata_fn: Optional[Callable[[str], str]] = None,
profile: Optional[str] = None,
):
self.id = id
self.path = path
self.custom_metadata_fn = custom_metadata_fn
self.urls = []
def load_data_urls(self):
self.urls = fast_scandir(self.path, ["tar"])[1]
return self.urls
def audio_decoder(key, value):
# Get file extension from key
ext = key.split(".")[-1]
if ext in AUDIO_KEYS:
return torchaudio.load(io.BytesIO(value))
else:
return None
def collation_fn(samples):
batched = list(zip(*samples))
result = []
for b in batched:
if isinstance(b[0], (int, float)):
b = np.array(b)
elif isinstance(b[0], torch.Tensor):
b = torch.stack(b)
elif isinstance(b[0], np.ndarray):
b = np.array(b)
else:
b = b
result.append(b)
return result
class WebDatasetDataLoader():
def __init__(
self,
datasets: List[S3DatasetConfig],
batch_size,
sample_size,
sample_rate=48000,
num_workers=8,
epoch_steps=1000,
random_crop=True,
force_channels="stereo",
augment_phase=True,
**data_loader_kwargs
):
self.datasets = datasets
self.sample_size = sample_size
self.sample_rate = sample_rate
self.random_crop = random_crop
self.force_channels = force_channels
self.augment_phase = augment_phase
urls = [dataset.load_data_urls() for dataset in datasets]
# Flatten the list of lists of URLs
urls = [url for dataset_urls in urls for url in dataset_urls]
# Shuffle the urls
random.shuffle(urls)
self.dataset = wds.DataPipeline(
wds.ResampledShards(urls),
wds.tarfile_to_samples(handler=log_and_continue),
wds.decode(audio_decoder, handler=log_and_continue),
wds.map(self.wds_preprocess, handler=log_and_continue),
wds.select(is_valid_sample),
wds.to_tuple("audio", "json", handler=log_and_continue),
#wds.shuffle(bufsize=1000, initial=5000),
wds.batched(batch_size, partial=False, collation_fn=collation_fn),
).with_epoch(epoch_steps//num_workers if num_workers > 0 else epoch_steps)
self.data_loader = wds.WebLoader(self.dataset, num_workers=num_workers, **data_loader_kwargs)
def wds_preprocess(self, sample):
found_key, rewrite_key = '', ''
for k, v in sample.items(): # print the all entries in dict
for akey in AUDIO_KEYS:
if k.endswith(akey):
# to rename long/weird key with its simpler counterpart
found_key, rewrite_key = k, akey
break
if '' != found_key:
break
if '' == found_key: # got no audio!
return None # try returning None to tell WebDataset to skip this one
audio, in_sr = sample[found_key]
if in_sr != self.sample_rate:
resample_tf = T.Resample(in_sr, self.sample_rate)
audio = resample_tf(audio)
if self.sample_size is not None:
# Pad/crop and get the relative timestamp
pad_crop = PadCrop_Normalized_T(
self.sample_size, randomize=self.random_crop, sample_rate=self.sample_rate)
audio, t_start, t_end, seconds_start, seconds_total, padding_mask = pad_crop(
audio)
sample["json"]["seconds_start"] = seconds_start
sample["json"]["seconds_total"] = seconds_total
sample["json"]["padding_mask"] = padding_mask
else:
t_start, t_end = 0, 1
# Check if audio is length zero, initialize to a single zero if so
if audio.shape[-1] == 0:
audio = torch.zeros(1, 1)
# Make the audio stereo and augment by randomly inverting phase
augs = torch.nn.Sequential(
Stereo() if self.force_channels == "stereo" else torch.nn.Identity(),
Mono() if self.force_channels == "mono" else torch.nn.Identity(),
PhaseFlipper() if self.augment_phase else torch.nn.Identity()
)
audio = augs(audio)
sample["json"]["timestamps"] = (t_start, t_end)
if "text" in sample["json"]:
sample["json"]["prompt"] = sample["json"]["text"]
# Check for custom metadata functions
for dataset in self.datasets:
if dataset.custom_metadata_fn is None:
continue
if dataset.path in sample["__url__"]:
custom_metadata = dataset.custom_metadata_fn(sample["json"], audio)
sample["json"].update(custom_metadata)
if found_key != rewrite_key: # rename long/weird key with its simpler counterpart
del sample[found_key]
sample["audio"] = audio
# Add audio to the metadata as well for conditioning
sample["json"]["audio"] = audio
return sample
def create_dataloader_from_config(dataset_config, batch_size, sample_size, sample_rate, audio_channels=2, num_workers=4):
dataset_type = dataset_config.get("dataset_type", None)
assert dataset_type is not None, "Dataset type must be specified in dataset config"
if audio_channels == 1:
force_channels = "mono"
else:
force_channels = "stereo"
if dataset_type == "audio_dir":
audio_dir_configs = dataset_config.get("datasets", None)
assert audio_dir_configs is not None, "Directory configuration must be specified in datasets[\"dataset\"]"
configs = []
for audio_dir_config in audio_dir_configs:
audio_dir_path = audio_dir_config.get("path", None)
assert audio_dir_path is not None, "Path must be set for local audio directory configuration"
custom_metadata_fn = None
custom_metadata_module_path = audio_dir_config.get("custom_metadata_module", None)
if custom_metadata_module_path is not None:
spec = importlib.util.spec_from_file_location("metadata_module", custom_metadata_module_path)
metadata_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(metadata_module)
custom_metadata_fn = metadata_module.get_custom_metadata
configs.append(
LocalDatasetConfig(
id=audio_dir_config["id"],
path=audio_dir_path,
custom_metadata_fn=custom_metadata_fn
)
)
train_set = SampleDataset(
configs,
sample_rate=sample_rate,
sample_size=sample_size,
random_crop=dataset_config.get("random_crop", True),
force_channels=force_channels
)
return torch.utils.data.DataLoader(train_set, batch_size, shuffle=True,
num_workers=num_workers, persistent_workers=True, pin_memory=True, drop_last=True, collate_fn=collation_fn)
elif dataset_type in ["s3", "wds"]: # Support "s3" type for backwards compatibility
wds_configs = []
for wds_config in dataset_config["datasets"]:
custom_metadata_fn = None
custom_metadata_module_path = wds_config.get("custom_metadata_module", None)
if custom_metadata_module_path is not None:
spec = importlib.util.spec_from_file_location("metadata_module", custom_metadata_module_path)
metadata_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(metadata_module)
custom_metadata_fn = metadata_module.get_custom_metadata
if "s3_path" in wds_config:
wds_configs.append(
S3DatasetConfig(
id=wds_config["id"],
s3_path=wds_config["s3_path"],
custom_metadata_fn=custom_metadata_fn,
profile=wds_config.get("profile", None),
)
)
elif "path" in wds_config:
wds_configs.append(
LocalWebDatasetConfig(
id=wds_config["id"],
path=wds_config["path"],
custom_metadata_fn=custom_metadata_fn
)
)
return WebDatasetDataLoader(
wds_configs,
sample_rate=sample_rate,
sample_size=sample_size,
batch_size=batch_size,
random_crop=dataset_config.get("random_crop", True),
num_workers=num_workers,
persistent_workers=True,
force_channels=force_channels,
epoch_steps=dataset_config.get("epoch_steps", 2000)
).data_loader |