|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | Utility that updates the metadata of the Transformers library in the repository `huggingface/transformers-metadata`. | 
					
						
						|  |  | 
					
						
						|  | Usage for an update (as used by the GitHub action `update_metadata`): | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | python utils/update_metadata.py --token <token> --commit_sha <commit_sha> | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | Usage to check all pipelines are properly defined in the constant `PIPELINE_TAGS_AND_AUTO_MODELS` of this script, so | 
					
						
						|  | that new pipelines are properly added as metadata (as used in `make repo-consistency`): | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | python utils/update_metadata.py --check-only | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  | import argparse | 
					
						
						|  | import collections | 
					
						
						|  | import os | 
					
						
						|  | import re | 
					
						
						|  | import tempfile | 
					
						
						|  | from typing import Dict, List, Tuple | 
					
						
						|  |  | 
					
						
						|  | import pandas as pd | 
					
						
						|  | from datasets import Dataset | 
					
						
						|  | from huggingface_hub import hf_hub_download, upload_folder | 
					
						
						|  |  | 
					
						
						|  | from transformers.utils import direct_transformers_import | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | TRANSFORMERS_PATH = "src/transformers" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | transformers_module = direct_transformers_import(TRANSFORMERS_PATH) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _re_tf_models = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") | 
					
						
						|  | _re_flax_models = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") | 
					
						
						|  |  | 
					
						
						|  | _re_pt_models = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | PIPELINE_TAGS_AND_AUTO_MODELS = [ | 
					
						
						|  | ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), | 
					
						
						|  | ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), | 
					
						
						|  | ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), | 
					
						
						|  | ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), | 
					
						
						|  | ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), | 
					
						
						|  | ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), | 
					
						
						|  | ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), | 
					
						
						|  | ("image-to-image", "MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES", "AutoModelForImageToImage"), | 
					
						
						|  | ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), | 
					
						
						|  | ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), | 
					
						
						|  | ( | 
					
						
						|  | "zero-shot-object-detection", | 
					
						
						|  | "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", | 
					
						
						|  | "AutoModelForZeroShotObjectDetection", | 
					
						
						|  | ), | 
					
						
						|  | ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), | 
					
						
						|  | ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), | 
					
						
						|  | ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), | 
					
						
						|  | ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), | 
					
						
						|  | ( | 
					
						
						|  | "table-question-answering", | 
					
						
						|  | "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", | 
					
						
						|  | "AutoModelForTableQuestionAnswering", | 
					
						
						|  | ), | 
					
						
						|  | ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), | 
					
						
						|  | ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), | 
					
						
						|  | ( | 
					
						
						|  | "next-sentence-prediction", | 
					
						
						|  | "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", | 
					
						
						|  | "AutoModelForNextSentencePrediction", | 
					
						
						|  | ), | 
					
						
						|  | ( | 
					
						
						|  | "audio-frame-classification", | 
					
						
						|  | "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", | 
					
						
						|  | "AutoModelForAudioFrameClassification", | 
					
						
						|  | ), | 
					
						
						|  | ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), | 
					
						
						|  | ( | 
					
						
						|  | "document-question-answering", | 
					
						
						|  | "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", | 
					
						
						|  | "AutoModelForDocumentQuestionAnswering", | 
					
						
						|  | ), | 
					
						
						|  | ( | 
					
						
						|  | "visual-question-answering", | 
					
						
						|  | "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", | 
					
						
						|  | "AutoModelForVisualQuestionAnswering", | 
					
						
						|  | ), | 
					
						
						|  | ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), | 
					
						
						|  | ( | 
					
						
						|  | "zero-shot-image-classification", | 
					
						
						|  | "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", | 
					
						
						|  | "AutoModelForZeroShotImageClassification", | 
					
						
						|  | ), | 
					
						
						|  | ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), | 
					
						
						|  | ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), | 
					
						
						|  | ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), | 
					
						
						|  | ("text-to-audio", "MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING_NAMES", "AutoModelForTextToSpectrogram"), | 
					
						
						|  | ("text-to-audio", "MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING_NAMES", "AutoModelForTextToWaveform"), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def camel_case_split(identifier: str) -> List[str]: | 
					
						
						|  | """ | 
					
						
						|  | Split a camel-cased name into words. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | identifier (`str`): The camel-cased name to parse. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `List[str]`: The list of words in the identifier (as seprated by capital letters). | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```py | 
					
						
						|  | >>> camel_case_split("CamelCasedClass") | 
					
						
						|  | ["Camel", "Cased", "Class"] | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | matches = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", identifier) | 
					
						
						|  | return [m.group(0) for m in matches] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_frameworks_table() -> pd.DataFrame: | 
					
						
						|  | """ | 
					
						
						|  | Generates a dataframe containing the supported auto classes for each model type, using the content of the auto | 
					
						
						|  | modules. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | config_maping_names = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES | 
					
						
						|  | model_prefix_to_model_type = { | 
					
						
						|  | config.replace("Config", ""): model_type for model_type, config in config_maping_names.items() | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pt_models = collections.defaultdict(bool) | 
					
						
						|  | tf_models = collections.defaultdict(bool) | 
					
						
						|  | flax_models = collections.defaultdict(bool) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for attr_name in dir(transformers_module): | 
					
						
						|  | lookup_dict = None | 
					
						
						|  | if _re_tf_models.match(attr_name) is not None: | 
					
						
						|  | lookup_dict = tf_models | 
					
						
						|  | attr_name = _re_tf_models.match(attr_name).groups()[0] | 
					
						
						|  | elif _re_flax_models.match(attr_name) is not None: | 
					
						
						|  | lookup_dict = flax_models | 
					
						
						|  | attr_name = _re_flax_models.match(attr_name).groups()[0] | 
					
						
						|  | elif _re_pt_models.match(attr_name) is not None: | 
					
						
						|  | lookup_dict = pt_models | 
					
						
						|  | attr_name = _re_pt_models.match(attr_name).groups()[0] | 
					
						
						|  |  | 
					
						
						|  | if lookup_dict is not None: | 
					
						
						|  | while len(attr_name) > 0: | 
					
						
						|  | if attr_name in model_prefix_to_model_type: | 
					
						
						|  | lookup_dict[model_prefix_to_model_type[attr_name]] = True | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  | attr_name = "".join(camel_case_split(attr_name)[:-1]) | 
					
						
						|  |  | 
					
						
						|  | all_models = set(list(pt_models.keys()) + list(tf_models.keys()) + list(flax_models.keys())) | 
					
						
						|  | all_models = list(all_models) | 
					
						
						|  | all_models.sort() | 
					
						
						|  |  | 
					
						
						|  | data = {"model_type": all_models} | 
					
						
						|  | data["pytorch"] = [pt_models[t] for t in all_models] | 
					
						
						|  | data["tensorflow"] = [tf_models[t] for t in all_models] | 
					
						
						|  | data["flax"] = [flax_models[t] for t in all_models] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | processors = {} | 
					
						
						|  | for t in all_models: | 
					
						
						|  | if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: | 
					
						
						|  | processors[t] = "AutoProcessor" | 
					
						
						|  | elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: | 
					
						
						|  | processors[t] = "AutoTokenizer" | 
					
						
						|  | elif t in transformers_module.models.auto.image_processing_auto.IMAGE_PROCESSOR_MAPPING_NAMES: | 
					
						
						|  | processors[t] = "AutoImageProcessor" | 
					
						
						|  | elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: | 
					
						
						|  | processors[t] = "AutoFeatureExtractor" | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | processors[t] = "AutoTokenizer" | 
					
						
						|  |  | 
					
						
						|  | data["processor"] = [processors[t] for t in all_models] | 
					
						
						|  |  | 
					
						
						|  | return pd.DataFrame(data) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def update_pipeline_and_auto_class_table(table: Dict[str, Tuple[str, str]]) -> Dict[str, Tuple[str, str]]: | 
					
						
						|  | """ | 
					
						
						|  | Update the table maping models to pipelines and auto classes without removing old keys if they don't exist anymore. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | table (`Dict[str, Tuple[str, str]]`): | 
					
						
						|  | The existing table mapping model names to a tuple containing the pipeline tag and the auto-class name with | 
					
						
						|  | which they should be used. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `Dict[str, Tuple[str, str]]`: The updated table in the same format. | 
					
						
						|  | """ | 
					
						
						|  | auto_modules = [ | 
					
						
						|  | transformers_module.models.auto.modeling_auto, | 
					
						
						|  | transformers_module.models.auto.modeling_tf_auto, | 
					
						
						|  | transformers_module.models.auto.modeling_flax_auto, | 
					
						
						|  | ] | 
					
						
						|  | for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: | 
					
						
						|  | model_mappings = [model_mapping, f"TF_{model_mapping}", f"FLAX_{model_mapping}"] | 
					
						
						|  | auto_classes = [auto_class, f"TF_{auto_class}", f"Flax_{auto_class}"] | 
					
						
						|  |  | 
					
						
						|  | for module, cls, mapping in zip(auto_modules, auto_classes, model_mappings): | 
					
						
						|  |  | 
					
						
						|  | if not hasattr(module, mapping): | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | model_names = [] | 
					
						
						|  | for name in getattr(module, mapping).values(): | 
					
						
						|  | if isinstance(name, str): | 
					
						
						|  | model_names.append(name) | 
					
						
						|  | else: | 
					
						
						|  | model_names.extend(list(name)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | table.update({model_name: (pipeline_tag, cls) for model_name in model_names}) | 
					
						
						|  |  | 
					
						
						|  | return table | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def update_metadata(token: str, commit_sha: str): | 
					
						
						|  | """ | 
					
						
						|  | Update the metadata for the Transformers repo in `huggingface/transformers-metadata`. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | token (`str`): A valid token giving write access to `huggingface/transformers-metadata`. | 
					
						
						|  | commit_sha (`str`): The commit SHA on Transformers corresponding to this update. | 
					
						
						|  | """ | 
					
						
						|  | frameworks_table = get_frameworks_table() | 
					
						
						|  | frameworks_dataset = Dataset.from_pandas(frameworks_table) | 
					
						
						|  |  | 
					
						
						|  | resolved_tags_file = hf_hub_download( | 
					
						
						|  | "huggingface/transformers-metadata", "pipeline_tags.json", repo_type="dataset", token=token | 
					
						
						|  | ) | 
					
						
						|  | tags_dataset = Dataset.from_json(resolved_tags_file) | 
					
						
						|  | table = { | 
					
						
						|  | tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"]) | 
					
						
						|  | for i in range(len(tags_dataset)) | 
					
						
						|  | } | 
					
						
						|  | table = update_pipeline_and_auto_class_table(table) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_classes = sorted(table.keys()) | 
					
						
						|  | tags_table = pd.DataFrame( | 
					
						
						|  | { | 
					
						
						|  | "model_class": model_classes, | 
					
						
						|  | "pipeline_tag": [table[m][0] for m in model_classes], | 
					
						
						|  | "auto_class": [table[m][1] for m in model_classes], | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | tags_dataset = Dataset.from_pandas(tags_table) | 
					
						
						|  |  | 
					
						
						|  | with tempfile.TemporaryDirectory() as tmp_dir: | 
					
						
						|  | frameworks_dataset.to_json(os.path.join(tmp_dir, "frameworks.json")) | 
					
						
						|  | tags_dataset.to_json(os.path.join(tmp_dir, "pipeline_tags.json")) | 
					
						
						|  |  | 
					
						
						|  | if commit_sha is not None: | 
					
						
						|  | commit_message = ( | 
					
						
						|  | f"Update with commit {commit_sha}\n\nSee: " | 
					
						
						|  | f"https://github.com/huggingface/transformers/commit/{commit_sha}" | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | commit_message = "Update" | 
					
						
						|  |  | 
					
						
						|  | upload_folder( | 
					
						
						|  | repo_id="huggingface/transformers-metadata", | 
					
						
						|  | folder_path=tmp_dir, | 
					
						
						|  | repo_type="dataset", | 
					
						
						|  | token=token, | 
					
						
						|  | commit_message=commit_message, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def check_pipeline_tags(): | 
					
						
						|  | """ | 
					
						
						|  | Check all pipeline tags are properly defined in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant of this script. | 
					
						
						|  | """ | 
					
						
						|  | in_table = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} | 
					
						
						|  | pipeline_tasks = transformers_module.pipelines.SUPPORTED_TASKS | 
					
						
						|  | missing = [] | 
					
						
						|  | for key in pipeline_tasks: | 
					
						
						|  | if key not in in_table: | 
					
						
						|  | model = pipeline_tasks[key]["pt"] | 
					
						
						|  | if isinstance(model, (list, tuple)): | 
					
						
						|  | model = model[0] | 
					
						
						|  | model = model.__name__ | 
					
						
						|  | if model not in in_table.values(): | 
					
						
						|  | missing.append(key) | 
					
						
						|  |  | 
					
						
						|  | if len(missing) > 0: | 
					
						
						|  | msg = ", ".join(missing) | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside " | 
					
						
						|  | f"`utils/update_metadata.py`: {msg}. Please add them!" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | parser = argparse.ArgumentParser() | 
					
						
						|  | parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") | 
					
						
						|  | parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") | 
					
						
						|  | parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") | 
					
						
						|  | args = parser.parse_args() | 
					
						
						|  |  | 
					
						
						|  | if args.check_only: | 
					
						
						|  | check_pipeline_tags() | 
					
						
						|  | else: | 
					
						
						|  | update_metadata(args.token, args.commit_sha) | 
					
						
						|  |  |